首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The subcellular localization of renin and kallikrein in rat kidney cortex homogenate was investigated using both differential and density gradient centrifugation techniques. Highest specific activity of renin was found in the heavy mitochondrial fraction. Mitochondrial localization of renin was further supported by the behaviour of succinic dehydrogenase. By differential centrifugation, highest specific activity of kallikrein was found in the light mitochondrial fraction, while by density gradient centrifugation kallikrein was almost completely recovered in the lysosomal fraction. Lysosomal localization of kallikrein is further supported by the behaviour of acid phosphatase. The different subcellular localizations of renin and kallikrein are confirmed and the suggestion that kallikrein is located in the lysosomes is advanced.  相似文献   

2.
3.
1. Subcellular fractions of rat kidney cortex generated angiotensin I continuously over 2h when incubated at 37degreesC with rat renin, indicating the presence of renin substrate within cells in the renal cortex. 2. Renin substrate was located in highest specific concentration in particulate fractions. The particles containing renin substrate had a sedimentation velocity slightly lower than mitochondria and renin granules but greater than the microsomal fraction. 3. Isopycnic gradient centrifugation indicated a density of 1.190g/ml for the particles containing renin substrate, compared with 1.201 for renin granules, 1.177 for mitochondria, and 1.170 and 1.230 for lysosomes in the heavy-granule fraction. 4. In the liver, renin substrate was also found in particles, but these had a lower sedimentation rate than those from the kidney. 5. The molecular weights of renin substrate in kidney and liver granules and rat plasma were similar, namely 61000-62000. 6. On the basis of these biochemical findings, a mechanism for the intrarenal production of angiotensin, incorporating a subcellular reaction scheme, is proposed.  相似文献   

4.
We analyzed by high-performance liquid chromatography and radioimmunoassay angiotensin I (Ang I), Ang II, Ang-(1–7), and metabolites in the adrenal, kidney and heart of normotensive female Sprague–Dawley (SD) and transgenic hypertensive [TGR(mRen-2)27] rats carrying the murine Ren-2d renin gene. The monogenetic model of hypertensive rats had significant increases in adrenal Ang II; whereas in the kidney Ang II was unchanged, but Ang I and Ang-(1–7) were significantly lower. Cardiac Ang I, Ang II, and Ang-(2–10) were significantly reduced in transgenic rats, while Ang-(2–7) was increased. In SD and transgenic rats kidney and adrenal angiotensins increased primarily during estrus or proestrus. In female transgenic rats the increased adrenal Ang II and the sustained renal Ang II may contribute to the established phase of hypertension.  相似文献   

5.
Evidence accumulates that intrarenal angiotensin II (AngII) plays important roles in the regulation of renal functions. To determine the mechanism and site of the intrarenal formation of AngII, we employed histochemical and cell biological methods. Immunohistochemical studies have revealed the coexistence of renin and AngII in juxtaglomerular (JG) cells, and electron microscopic studies and subcellular organelle fractionation have demonstrated the colocalization of renin and angiotensin in renin granules. The mechanism of this AngII accumulation has been investigated. Immunoreactive angiotensin I (AngI) appeared slowly in JG cells after prolonged administration of angiotensin-converting enzyme (ACE) inhibitors. Cloned and cultured renin-containing cells derived from rat kidney were also found to contain renin, ACE, and AngI and AngII. The subcellular fractionation of renin granules from rat kidney homogenate demonstrated AngI and AngII in the renin granule fractions. These findings suggest the formation of both angiotensins in JG cells. To study the release of AngII, we determined the presence of the angiotensins in renal lymph. Renin was found in renal lymph at a high concentration. Both AngI and AngII were also present in renal lymph in moderate concentrations. It is possible that AngII in the interstitial fluid may play a role in the regulation of renal functions. From these results it has been concluded that AngII is formed in JG cells in the kidney and is secreted with renin into interstitial fluid and plasma, and that AngII formed in the kidney cells may participate in various renal functions.  相似文献   

6.
A direct measurement of both angiotensins I and II immunoreactive substances was made in the perfusate from isolated human umbilical vein perfused with Krebs-Ringer solution which was free of any component of the renin-angiotensin system. The identity of the immunoreactive peptides was confirmed as angiotensin I and angiotensin II by high-performance liquid chromatography in reference to standard compounds. The rate of release of angiotensins was 41.9 +/- 7.4 and 63.4 +/- 12.0 pg for angiotensins I and II, respectively, during the first perfusion period of 30 min, and it remained stable at least for 3 hours. Angiotensin-converting enzyme inhibitor captopril, added to the perfusion medium (10(-9) to 5 x 10(-6) M), suppressed immunoreactive angiotensin II release in a dose-dependent fashion; the maximal percent inhibition of angiotensin II release evoked by captopril (5 x 10(-6) M) was approximately 56%. These results taken together with the previous observations of presence of essential components of the renin-angiotensin system in vascular tissue provide direct evidence for local generation and subsequent release of angiotensin II in vascular beds of human beings.  相似文献   

7.
Leydig cells were purified from rat testes by discontinuous metrizamide density gradient and were shown to contain renin (EC 3.4.99.1), angiotensin-converting enzyme (dipeptidyl carboxypeptidase, (EC 3.4.15.1), and the peptide hormone angiotensins I, II and III as determined by the combined HPLC and radioimmunoassay. In germinal cells only angiotensin II (AII) was found at a significant level. These findings provide evidence for intracellular formation of AII in testicular cells and demonstrate that an intracellular renin-angiotensin system exists in normal non-transformed cells.  相似文献   

8.
Dog and rat adrenal glomerulosa cells and subcellular fractions have been utilized to evaluate the mechanism of angiotensin II- and angiotensin III-induced aldosterone production. The effects of angiotensin, ACTH, and potassium have been compared on cyclic AMP and cyclic GMP in isolated glomerulosa cells and adenylate cyclase activity in subcellular fractions. The effect of angiotensin II has also been assessed on Na+-K+-activated ATPase of plasma membrane enriched fractions of dog and rat adrenals. We have demonstrated no effect of angiotensin II or angiotensin III on either adenylate cyclase, cyclic AMP, cyclic GMP, or Na+-K+-dependent ATPase activity over a wide range of concentrations. Potassium ion in concentrations that stimulate significant aldosterone production was also without effect. The negative effects of angiotensin and potassium were contrasted against a positive correlation between an ACTH-induced effect on aldosterone production, adenylate cyclase, and cyclic AMP accumulation. These studies have served to demonstrate that neither adenylate cyclase, cyclic AMP, cyclic GMP, or Na+-K+-activated ATPase seem to be directly involved in the mechanism of action of angiotensins on aldosterone production in the rat and dog adrenal glomerulosa.  相似文献   

9.
Renin and angiotensins coexist in various tissues. The mode of control of the extrarenal renin-angiotensin system is not clear. Whether it is renin or angiotensin that is secreted has not been identified. We have investigated gonadotropin-dependent synthesis and subsequent release of the components of the intracellular renin-angiotensin system in a cloned and cultured mouse Leydig tumor cell line (MA-10). Treatment of cultured Leydig cells with bovine luteinizing hormone (bLH, 100 ng/ml) or human chorionic gonadotropin (hCG, 25 ng/ml) resulted in greater than 150- and 40- fold increased formation of angiotensin I and angiotensin II. In cells incubated with bLH or hCG, the majority of AII (up to 90%) was found in the culture medium while most of angiotensin I (greater than 85%) was in the cell lysate. Treatment with gonadotropic hormones (bLH/ hCG) increased renin 35- to 40-fold. Renin activity was confined mainly in the cell lysate even after the stimulation by gonadotropins, and only 1-2% of the total renin activity was detectable in culture medium. These results were interpreted that, in these transformed cells, hormonally-induced renin functions to generate angiotensin I within the Leydig cell and it is the angiotensins which are secreted.  相似文献   

10.
The enzymes required to convert the prohormone angiotensin I into angiotensins II and III, secretagogues of aldosterone, are enriched in association with capillary endothelium isolated from rat adrenal cortex. Thus the secretion of aldosterone may be controlled, in part, by processing of peptides occurring within the adrenal gland itself.  相似文献   

11.
To prevent in vitro generation of angiotensins, the renin inhibitor CGP 29287 (CGP) was added to blood sampling tubes. Plasma immunoreactive angiotensin (ir-ANG) I and II were simultaneously measured by radioimmunoassay after rapid and quantitative extraction from a single plasma sample on phenylsilylsilica (Bondelut PH). True plasma ANG-(1-8)octapeptide was determined after additional separation of the different angiotensins by high performance liquid chromatography. Ir-ANG II/CGP showed the known linear relationship with ANG-(1-8)octapeptide (r = 0.87, n = 23), but - in contrast to studies without addition of CGP - the y-axis intercept which presumably represents cross-reacting angiotensins other than ANG II was very small. Ir-ANG II/CGP concentrations fell below 1 fmol/ml after converting enzyme inhibition. The results suggest that CGP 29287 prevents in vitro generation of ANG I and ANG II as well as the ANG-metabolites. Ir-ANG I/CGP measured after Bondelut PH extraction of the plasma was strongly correlated with ir-ANG I obtained after blood ethanol extraction (r = 0.97, n = 23). Thus, it is now possible to measure reliably both ANG I and ANG II within the same plasma extract after a simple extraction procedure.  相似文献   

12.
1. A method for the extraction and purification of cytochrome c from rat liver is described. The method depends on multiple chromatography on Amberlite IRC-50 with elution with ammonium phosphate buffers of differing ionic composition and pH, interspersed with gel filtration with Sephadex G-25. Conditions leading to denaturation are avoided and the product is chromatographically pure. 2. The method may be used for the quantitative analysis of cytochrome c either in unfractionated liver or in subcellular fractions. 3. Two pools of cytochrome c were detected, one extractable at pH4.0 with distilled water and the other extracted from the residues of the first extraction with 0.15m-sodium chloride. 4. For subcellular distribution studies the liver was homogenized in 0.3m-sucrose and a nuclear fraction (washed thoroughly to remove trapped mitochondria), a mitochondrial fraction, a heavy microsomal fraction, a standard microsomal fraction and the cell sap were isolated. The mitochondrial fraction was subfractionated further by density-gradient centrifugation. Each fraction was analysed for protein, RNA, DNA, succinate-neotetrazolium oxidoreductase and glucose 6-phosphatase. 5. A total of 123mug. of cytochrome c was obtained/g. wet wt. of rat liver. 6. Values for the percentage subcellular distribution of cytochrome c are: nuclear fraction, 24.4; mitochondrial fraction, 57.2; heavy microsomal fraction, 5.2; standard microsomal fraction, 10.6; cell sap, 2.7. 7. Three out of the eight mitochondrial subfractions separated by gradient centrifugation contained 76% of the cytochrome c and 85% of the succinate-neotetrazolium oxidoreductase present in the mitochondrial fraction. 8. In unfractionated liver 94% of the cytochrome c was extracted at pH4.0 with water whereas in most of the subcellular fractions the corresponding value was approx. 75-80%.  相似文献   

13.
Effect of aldosterone on vascular angiotensin II receptors in the rat   总被引:3,自引:0,他引:3  
The effect of aldosterone on the density and affinity of binding sites for 125I-labelled angiotensin II was investigated in a particulate fraction prepared from the rat mesenteric arteriolar arcades. The infusion of aldosterone 6.6 micrograms/h intraperitoneally via Alzet osmotic minipumps for 6 d produced an increase in the density of binding sites for 125I-labelled angiotensin II without change in affinity. After sodium depletion, mesenteric artery angiotensin II receptors were down-regulated as expected. An increase in the number of binding sites could be found when aldosterone was infused into sodium-depleted rats with no change in the elevated plasma renin activity. The intraperitoneal infusion of angiotensin II (200 ng X kg-1 X min-1 for 6 d) simultaneously with aldosterone resulted in down-regulation of vascular angiotensin II receptors, whereas after intravenous angiotensin II infusion (at 60 ng X kg-1 X min-1) the density of angiotensin II binding sites rose with aldosterone infusion. Plasma renin activity (PRA) was reduced and plasma angiotensin II increased in a dose-dependent fashion after angiotensin II infusion. An aldosterone concentration of 3 ng/mL for 18 h produced an increase in the number of angiotensin II binding sites in rat mesenteric artery smooth muscle cells in culture. We conclude that increased plasma aldosterone may result in up-regulation of vascular angiotensin II receptors independently of changes in plasma renin activity, and may in certain physiological states effectively antagonize the down-regulating action of angiotensin II.  相似文献   

14.
The bindings of radioiodinated omega-conotoxin GVIA and [3H]-nitrendipine to subcellular fractions of rat brain were examined. The results indicated that omega-conotoxin binding site was mainly present in the mitochondrial fraction, whereas nitrendipine binding site was rich in the mitochondrial but also present in the post-mitochondrial fraction. Fractionation of the mitochondrial fraction on a sucrose density gradient centrifugation showed that the both binding sites were localized in the heavy synaptosomal fraction. These results strongly suggest that the N- and L-type voltage-sensitive calcium channels have different localizations.  相似文献   

15.
The presence of renin, angiotensin I-converting enzyme and angiotensin II detected by immunocytochemistry in the adult male rat anterior pituitary has suggested the existence of a pituitary renin-angiotensin system. To establish another mammalian experimental model we have investigated the presence of renin, angiotensinogen, angiotensin I-converting enzyme, and angiotensin II II in five normal lamb anterior pituitaries by immunocytochemistry after cryoultramicrotomy. Renin, angiotensinogen and angiotensin II immunoreactivities were observed only in cytoplasmic granules of lactotrophs, and the three proteins were found co-localized with prolactin in the same granules by double immunolabelling. No immunoreactive angiotensin I-converting enzyme was observed. These results suggest an activation of renin in the cytoplasmic granules of lactotrophs leading to a local synthesis of angiotensin II. Thus, the lamb anterior pituitary may provide a good experimental model for investigating the possible autocrine action of a local renin-angiotensin system on prolactin release in the human pituitary.  相似文献   

16.
An isolation procedure for synaptic plasma membranes from whole chick brain is reported that uses the combined flotation-sedimentation density gradient centrifugation procedure described by Jones and Matus (Jones, D. H. and Matus, A. I. (1974) Biochim. Biophys. Acta 356, 276-287) for rat brain. The particulate of the osmotically shocked and sonicated crude mitochondrial fraction was used for a flotation-sedimentation gradient step. Four fractions were recovered from the gradient after 30 min centrifugation. The fractions were identified and characterized by electron microscopy and by several markers for plasma membrane and other subcellular organelles. Fraction 2 was recovered from the 28.5-34% (w/v) sucrose interphase and contained the major part of the activities of the neuronal plasma membrane marker enzymes. The specific activities of the (Na+ +K+)-activated ATPase (EC 3.6.1.3), acetylcholinesterase (EC 3.1.1.7) and 5'-nucleotidase (EC 3.1.3.5) were, respectively, 4.5, 2.0 and 1.2 times higher than in the homogenate. However, Fraction 2 also contained considerable amounts of activities of putative lysosomal and microsomal markers in addition to lower amounts of mitochondrial and myelin markers. Although no prepurification of synaptosomes from the crude mitochondrial fraction was performed, the synaptic plasma membranes obtained showed many properties analogous to similar preparations from rat brain described in recent years.  相似文献   

17.
An isolation procedure for synaptic plasma membranes from whole chick brain is reported that uses the combined flotation-sedimentation density gradient centrifugation procedure described by Jones and Matus (Jones. D. H. and Matus. A. I. (1974) Biochim. Biophys. Acta 356, 276–287) for rat brain. The particulate of the osmotically shocked and sonicated crude mitochondrial fraction was used for a flotation-sedimentation gradient step. Four fractions were recovered from the gradient after 30 min centrifugation. The fractions were identified and characterized by electron microscopy and by several markers for plasma membrane and other subcellular organcelles. Fraction 2 was recovered from the 28.5–34% (w/v) sucrose interphase and contained the major part of the activities of the neuronal plasma membrane marker enzymes. The specific activities of the (Na++K+)-activated ATPase (EC 3.6.1.3), acetylcholinesterase (EC 3.1.1.7) and 5′-nucleotidase (EC 3.1.3.5) were, respectively, 4.5. 2.0 and 1.2 times higher than in the homogenate. However, Fraction 2 also contained considerable amounts of activities of putative lysosomal and microsomal markers in addition to lower amounts of mitochondrial and myelin markers. Although no prepurification of synaptosomes from the crude mitochondrial fraction was performed, the synaptic plasma membranes obtained showed many properties analogous to similar preparations from rat brain described in recent years.  相似文献   

18.
Angiotensin II and III have hypertensive effects. They induce vascular smooth muscle constriction, increase sodium reabsorption by renal tubules, stimulate the anteroventral third ventricle area, increase vasopressin and aldosterone secretions, and modify catecholamine metabolism. In this work, angiotensin II and III effects on norepinephrine uptake and release in rat adrenal medulla were investigated. Both angiotensins decreased total and neuronal norepinephrine uptake. Angiotensin II showed a biphasic effect only on evoked neuronal norepinephrine release (an earlier decrease followed by a later increase), while increasing the spontaneous norepinephrine release only after 12 min. On the other hand, angiotensin III showed a biphasic effect on evoked and spontaneous neuronal norepinephrine release. Both angiotensins altered norepinephrine distribution into intracellular stores, concentrating the amine into the granular pool and decreasing the cytosolic store. The results suggest a physiological biphasic effect of angiotensin II as well as angiotensin III that may be involved in the modulation of sympathetic activity in the rat adrenal medulla.  相似文献   

19.
A high-performance chromatographic technique for the separation of angiotensins and some related peptides is described. Complete separation of angiotensin I, angiotensin II, tetradecapeptide and the tetrapeptide Leu-Val-Tyr-Ser is achieved in a single step, using reversed-phase high-performance liquid chromatography. The application of this technique for the detection of renin activity in crude biological samples, employing the artificial renin substrate tetradecapeptide, is demonstrated.  相似文献   

20.
In a new method for measurement of inactive rat plasma renin, the trypsin generated angiotensin I immunoreactive material, which was HPLC characterized as similar to tetradecapeptide renin substrate, is removed by a cation exchange resin before the renin incubation step. The method also corrects for trypsin destruction of endogenous angiotensinogen by the addition of exogenous angiotensinogen. When measured with this method inactive renin in rat plasma decreased after nephrectomy and increased after adrenalectomy. This is in accordance with findings in humans. A sexual dimorphism of prorenin (inactive renin) in rat plasma, similar to that reported in humans and mice, was demonstrated. Thus, inactive renin in the rat is no exception among species, and the rat might be a suitable animal model for further studies dealing with the physiology of prorenin in plasma and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号