首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
St Maurice M  Bearne SL 《Biochemistry》2000,39(44):13324-13335
Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelic acid, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, carboxylate-, phosphonate-, and hydroxamate-containing substrate and intermediate analogues were examined for their ability to inhibit MR. Comparison of the competitive inhibition constants revealed that an alpha-hydroxyl function is required for recognition of the ligand as an intermediate analogue. Two intermediate analogues, alpha-hydroxybenzylphosphonate (alpha-HBP) and benzohydroxamate, were bound with affinities approximately 100-fold greater than that observed for the substrate. Furthermore, MR bound alpha-HBP enantioselectively, displaying a 35-fold higher affinity for the (S)-enantiomer relative to the (R)-enantiomer. In the X-ray structure of mandelate racemase [Landro, J. A., Gerlt, J. A., Kozarich, J. W., Koo, C. W., Shah, V. J., Kenyon, G. L., Neidhart, D. J., Fujita, J., and Petsko, G. A. (1994) Biochemistry 33, 635-643], the alpha-hydroxyl function of the competitive inhibitor (S)-atrolactate is within hydrogen bonding distance of Asn 197. To demonstrate the importance of the alpha-hydroxyl function in intermediate binding, the N197A mutant was constructed. The values of k(cat) for N197A were reduced 30-fold for (R)-mandelate and 179-fold for (S)-mandelate relative to wild-type MR; the values of k(cat)/K(m) were reduced 208-fold for (R)-mandelate and 556-fold for (S)-mandelate. N197A shows only a 3.5-fold reduction in its affinity for the substrate analogue (R)-atrolactate but a 51- and 18-fold reduction in affinity for alpha-HBP and benzohydroxamate, respectively. Thus, interaction between Asn 197 and the substrate's alpha-hydroxyl function provides approximately 3.5 kcal/mol of transition-state stabilization free energy to differentially stabilize the transition state relative to the ground state.  相似文献   

2.
Bourque JR  Bearne SL 《Biochemistry》2008,47(2):566-578
Mandelate racemase from Pseudomonas putida catalyzes the Mg2+-dependent 1,1-proton transfer that interconverts the enantiomers of mandelate. Residues of the 20s and 50s loops determine, in part, the topology and polarity of the active site and hence the substrate specificity. Previously, we proposed that, during racemization, the phenyl ring of mandelate moves between an S-pocket comprised of residues from the 50s loop and an R-pocket comprised of residues from the 20s loop [Siddiqi, F., Bourque, J. R., Jiang, H., Gardner, M., St. Maurice, M., Blouin, C., and Bearne, S. L. (2005) Biochemistry 44, 9013-9021]. The 20s loop constitutes a mobile beta-meander flap that covers the active site cavity shielding it from solvent and controlling entry and egress of ligands. To understand the role of the 20s loop in catalysis and substrate specificity, we constructed a series of mutants (V22A, V22I, V22F, T24S, A25V, V26A, V26L, V26F, V29A, V29L, V29F, V26A/V29L, and V22I/V29L) in which the sizes of hydrophobic side chains of the loop residues were varied. Catalytic efficiencies (kcat/Km) for all mutants were reduced between 6- and 40-fold with the exception of those of V22I, V26A, V29L, and V22I/V29L which had near wild-type efficiencies with mandelate. Thr 24 and Ala 25, located at the tip of the 20s loop, were particularly sensitive to minor alterations in the size of their hydrophobic side chains; however, most mutations were tolerated quite well, suggesting that flap mobility could compensate for increases in the steric bulk of hydrophobic side chains. With the exception of V29L, with mandelate as the substrate, and V22F and V26A/V29L, with 2-naphthylglycolate (2-NG) as the substrate, the values of kcat and Km were not altered in a manner consistent with steric obstruction of the R-pocket, perhaps due to flap mobility compensating for the increased size of the hydrophobic side chains. Surprisingly, V22I and V29L catalyzed the racemization of the bulkier substrate 2-NG with kcat/Km values approximately 2-fold greater than those observed for wild-type mandelate racemase. Although minor changes in substrate specificity were achieved through alterations of the active site flap of mandelate racemase, our results suggest that hydrophobic residues that reside on a flexible flap and define the topology of an active site through their van der Waals contacts with the substrate are quite tolerant of a variety of steric substitutions.  相似文献   

3.
The two preceding papers [Powers, V. M., Koo, C. W., Kenyon, G. L., Gerlt, J. A., & Kozarich, J. W. (1991) Biochemistry (first paper of three in this issue); Neidhart, D. J., Howell, P. L., Petsko, G. A., Powers, V. M., Li, R., Kenyon, G. L., & Gerlt, J. A. (1991) Biochemistry (second paper of three in this issue)] suggest that the active site of mandelate racemase (MR) contains two distinct general acid/base catalysts: Lys 166, which abstracts the alpha-proton from (S)-mandelate, and His 297, which abstracts the alpha-proton from (R)-mandelate. In this paper we report on the properties of the mutant of MR in which His 297 has been converted to asparagine by site-directed mutagenesis (H297N). The structure of H297N, solved by molecular replacement at 2.2-A resolution, reveals that no conformational alterations accompany the substitution. As expected, H297N has no detectable MR activity. However, H297N catalyzes the stereospecific elimination of bromide ion from racemic p-(bromomethyl)mandelate to give p-(methyl)-benzoylformate in 45% yield at a rate equal to that measured for wild-type enzyme; the unreacted p-(bromomethyl)mandelate is recovered as (R)-p-(hydroxymethyl)mandelate. At pD 7.5, H297N catalyzes the stereospecific exchange of the alpha-proton of (S)- but not (R)-mandelate with D2O solvent at a rate 3.3-fold less than that observed for incorporation of solvent deuterium into (S)-mandelate catalyzed by wild-type enzyme. The pD dependence of the rate of the exchange reaction catalyzed by H297N reveals a pKa of 6.4 in D2O, which is assigned to Lys 166.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Lehoux IE  Mitra B 《Biochemistry》2000,39(33):10055-10065
(S)-Mandelate dehydrogenase from Pseudomonas putida is an FMN-dependent alpha-hydroxy acid dehydrogenase. Structural studies of two homologous enzymes, glycolate oxidase and flavocytochrome b(2), indicated that a conserved arginine residue (R277 in MDH) interacts with the product carboxylate group [Lindqvist, Y., Branden, C.-I., Mathews, F. S., and Lederer, F. (1991) J. Biol. Chem. 266, 3198-3207]. The catalytic role of R277 was investigated by site-specific mutagenesis together with chemical rescue experiments. The R277K, R277G, R277H, and R277L proteins were generated and purified in active forms. The k(cat) for the charge-conserved mutation, R277K, was only 4-fold lower than wt-MDH, but its K(m) value was 40-fold lower; in contrast, k(cat)s for R277G, R277H, and R277L were 400-1000-fold lower than for wt-MDH and K(m) values were 5-15-fold lower compared to R277K. The K(d)s for negatively charged competitive inhibitors were relatively unaffected in all four R277 mutants. The k(cat) for R277G could be enhanced by the addition of exogenous guanidines or imidazoles; the maximum rescued k(cat) was approximately 70% of the wt-MDH value. Only reagents that were positively charged and could function as hydrogen bond donors were effective rescue agents. Our results indicate that R277 plays a major role in transition state stabilization through its positive charge-consistent with a mechanism involving a carbanion intermediate. The positive charge has a relatively small contribution toward substrate binding. R277 also forms a specific hydrogen bond with both the substrate and the transition state; this interaction contributes significantly to the low K(m) for (S)-mandelate.  相似文献   

5.
The plasmid pSCR1 containing the gene for mandelate racemase (EC 5.1.2.2) from Pseudomonas putida (ATCC 12633) allows Pseudomonas aeruginosa (ATCC 15692) to grow on (R)-mandelate as its sole carbon source [Ransom, S. C., Gerlt, J. A., Powers, V. M., & Kenyon, G. L. (1988) Biochemistry 27, 540]; the chromosome of the P. aeruginosa host apparently does not contain the gene for mandelate racemase but does contain genes for the remaining enzymes in the mandelate pathway and enables growth on (S)-mandelate as carbon source. However, in the presence of alpha-phenylglycidate, an active-site-directed irreversible inhibitor (affinity label) of mandelate racemase, P. aeruginosa transformed with pSCR1 can utilize (S)-mandelate but not (R)-mandelate as carbon source. This inhibition of growth on (R)-mandelate provides a metabolic selection for mutants that are resistant to alpha-phenylglycidate. When (R)-mandelate is used as carbon source and alpha-phenylglycidate is present, a few colonies of P. aeruginosa transformed with pSCR1 grow slowly and appear on plates after several days. The plasmid isolated from these cells confers resistance to alpha-phenylglycidate on newly transformed cells of P. aeruginosa. This resistance to the affinity label is not due to a mutation within the primary structure of the enzyme. A single base change (C----A) located 87 bp upstream of the initiation codon for the gene for mandelate racemase was detected in three independent isolates of alpha-phenylglycidate-resistant colonies and appears responsible for a 30-fold increase in the amount of mandelate racemase encoded by the gene contained in the plasmid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
St Maurice M  Bearne SL 《Biochemistry》2004,43(9):2524-2532
Mandelate racemase (EC 5.1.2.2) from Pseudomonas putida catalyzes the interconversion of the two enantiomers of mandelic acid with remarkable proficiency, stabilizing the altered substrate in the transition state by approximately 26 kcal/mol. We have used a series of substrate analogues (glycolates) and intermediate analogues (hydroxamates) to evaluate the contribution of the hydrophobic cavity within the enzyme's active site to ligand binding. Free energy changes accompanying binding of glycolate derivatives correlated well with the hydrophobic substituent constant pi and the van der Waals surface areas of the ligands. The observed dependence of the apparent binding free energy on surface area of the ligand was -30 +/- 5 cal mol(-1) A(-2) at 25 degrees C. Free energy changes accompanying binding of hydroxamate derivatives also correlated well with pi values and the van der Waals surface areas of the ligands, giving a slightly greater free energy dependence equal to -41 +/- 3 cal mol(-1) A(-2) at 25 degrees C. Surprisingly, mandelate racemase exhibited a binding affinity for the intermediate analogue benzohydroxamate that was 2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions. This suggests that there are additional specific interactions that stabilize the altered substrate in the transition state. Mandelate racemase was competitively inhibited by (R,S)-1-naphthylglycolate (apparent K(i) = 1.9 +/- 0.1 mM) and (R,S)-2-naphthylglycolate (apparent K(i) = 0.52 +/- 0.03 mM), demonstrating the plasticity of the hydrophobic pocket. Both (R)- (K(m) = 0.46 +/- 0.06 mM, k(cat) = 33 +/- 1 s(-1)) and (S)-2-naphthylglycolate (K(m) = 0.41 +/- 0.03 mM, k(cat) = 25 +/- 1 s(-1)) were shown to be alternative substrates for mandelate racemase. These kinetic results demonstrate that no major steric restrictions are imposed on the binding of this bulkier substrate in the ground state but that steric factors appear to impair transition state/intermediate stabilization. 2-Naphthohydroxamate was identified as a competitive inhibitor of mandelate racemase, binding with an affinity (K(i) = 57 +/- 18 microM) that was reduced relative to that observed for benzohydroxamate and that was in accord with the approximately 10-fold reduction in the value of k(cat)/K(m) for the racemization of 2-naphthylglycolate. These findings indicate that, for mandelate racemase, steric constraints within the hydrophobic cavity of the enzyme-intermediate complex are more stringent than those in the enzyme-substrate complex.  相似文献   

7.
St Maurice M  Bearne SL 《Biochemistry》2002,41(12):4048-4058
Mandelate racemase (EC 5.1.2.2) from Pseudomonas putida catalyzes the interconversion of the two enantiomers of mandelic acid with remarkable proficiency, producing a rate enhancement exceeding 15 orders of magnitude. The rates of the forward and reverse reactions catalyzed by the wild-type enzyme and by a sluggish mutant (N197A) have been studied in the absence and presence of several viscosogenic agents. A partial dependence on relative solvent viscosity was observed for values of kcat and kcat/Km for the wild-type enzyme in sucrose-containing solutions. The value of kcat for the sluggish mutant was unaffected by varying solvent viscosity. However, sucrose did have a slight activating effect on mutant enzyme efficiency. In the presence of the polymeric viscosogens poly(ethylene glycol) and Ficoll, no effect on kcat or kcat/Km for the wild-type enzyme was observed. These results are consistent with both substrate binding and product dissociation being partially rate-determining in both directions. The viscosity variation method was used to estimate the rate constants comprising the steady-state expressions for kcat and kcat/Km. The rate constant for the conversion of bound (R)-mandelate to bound (S)-mandelate (k2) was found to be 889 +/- 40 s(-1) compared with a value of 654 +/- 58 s(-1) for kcat in the same direction. From the temperature dependence of Km (shown to equal K(S)), k2, and the rate constant for the uncatalyzed reaction [Bearne, S. L., and Wolfenden, R. (1997) Biochemistry 36, 1646-1656], we estimated the enthalpic and entropic changes associated with substrate binding (DeltaH = -8.9 +/- 0.8 kcal/mol, TDeltaS = -4.8 +/- 0.8 kcal/mol), the activation barrier for conversion of bound substrate to bound product (DeltaH# = +15.4 +/- 0.4 kcal/mol, TDeltaS# = +2.0 +/- 0.1 kcal/mol), and transition state stabilization (DeltaH(tx) = -22.9 +/- 0.8 kcal/mol, TDeltaS(tx) = +1.8 +/- 0.8 kcal/mol) during mandelate racemase-catalyzed racemization of (R)-mandelate at 25 degrees C. Although the high proficiency of mandelate racemase is achieved principally by enthalpic reduction, there is also a favorable and significant entropic contribution.  相似文献   

8.
The Y370G inverting mutant sialidase from Micromonospora viridifaciens possesses beta-sialidase activity with phenyl beta-sialoside (Ph-betaNeuAc) to give alpha-sialic acid as the first formed product. The derived catalytic rate constants for k(cat) and k(cat)/K(m) are 13.3 +/- 0.3 and (2.9 +/- 0.3) x 10(5) M(-)(1) s(-)(1), respectively. This enzyme is highly specific for the phenyl substrate, with substituted phenyl and thiophenyl leaving groups having k(cat) values that are at least 1000-fold lower. In addition, the Y370G mutant can transfer the sialic acid moiety from Ph-betaNeuAc to lactose in yields of up to 13%. Greater than 90% of the sialyl-lactose product formed in the coupling reactions is the alpha-2,6-isomer. A library encoding 6 x 10(5) different sialidases was constructed by mutating Y370, E260, T309, N310, and N311, residues that include and are proximal the catalytic tyrosine residue. A total of 2628 individuals were screened for hydrolytic activity against 4-nitrophenyl 2-thio-beta-sialoside and 4-methylumbelliferyl beta-sialoside. However, none of the mutants screened possessed a significant activity against either of the beta-sialosides.  相似文献   

9.
Lehoux IE  Mitra B 《Biochemistry》1999,38(18):5836-5848
(S)-Mandelate dehydrogenase from Pseudomonas putida, a member of the flavin mononucleotide-dependent alpha-hydroxy acid oxidase/dehydrogenase family, oxidizes (S)-mandelate to benzoylformate. The enzyme was purified with a carboxy-terminal histidine tag. Steady-state kinetic parameters indicate that it preferentially binds large substrates. A good correlation was obtained between the kcat, the substrate kinetic isotope effect (KIE), and the pKa of the substrate alpha-proton. The kcat decreased and the KIE increased for substrates whose alpha-protons have pKas higher than that of mandelate. These results support a mechanism involving a carbanion intermediate but are difficult to reconcile with one involving a direct hydride transfer. pH effects on steady-state parameters were determined with (S)-mandelate and a slow substrate, (R,S)-3-phenyllactate. The kcat/Km pH profile shows that two groups with apparent pKas of 5.5 and 8.9 in the free enzyme are important for activity. These pKas are shifted to 5.1 and 9.6 on binding (S)-mandelate, as shown in the kcat pH profile. The pH dependence of the KIEs suggests that the residues with these pKas are involved in the alpha-carbon-hydrogen bond-breaking step. pH dependencies of the inhibition constants for competitive inhibitors identified these residues as histidine 274 and arginine 277. We propose that histidine 274 is the base that abstracts the substrate alpha-proton and arginine 277 is important for substrate binding as well as stabilization of the carbanion/enolate intermediate.  相似文献   

10.
Studies of ligand binding to acetylcholinesterase (AChE) have demonstrated two sites of interaction. An acyl-enzyme intermediate is formed at the acylation site, and catalytic activity can be inhibited by ligand binding to a peripheral site. The three-dimensional structures of AChE-ligand complexes reveal a narrow and deep active site gorge and indicate that ligands specific for the acylation site at the base of the gorge must first traverse the peripheral site near the gorge entrance. In recent studies attempting to clarify the role of the peripheral site in the catalytic pathway for AChE, we showed that ligands which bind specifically to the peripheral site can slow the rates at which other ligands enter and exit the acylation site, a feature we called steric blockade [Szegletes, T., Mallender, W. D., and Rosenberry, T. L. (1998) Biochemistry 37, 4206-4216]. We also demonstrated that cationic substrates can form a low-affinity complex at the peripheral site that accelerates catalytic hydrolysis at low substrate concentrations but results in substrate inhibition at high concentrations because of steric blockade of product release [Szegletes, T., Mallender, W. D., Thomas, P. J., and Rosenberry, T. L. (1999) Biochemistry 38, 122-133]. In this report, we demonstrate that a key residue in the human AChE peripheral site with which the substrate acetylthiocholine interacts is D74. We extend our kinetic model to evaluate the substrate affinity for the peripheral site, indicated by the equilibrium dissociation constant K(S), from the dependence of the substrate hydrolysis rate on substrate concentration. For human AChE, a K(S) of 1.9+/-0.7 mM obtained by fitting this substrate inhibition curve agreed with a K(S) of 1.3+/-1.0 mM measured directly from acetylthiocholine inhibition of the binding of the neurotoxin fasciculin to the peripheral site. For Torpedo AChE, a K(S) of 0.5+/- 0.2 mM obtained from substrate inhibition agreed with a K(S) of 0.4+/- 0.2 mM measured with fasciculin. Introduction of the D72G mutation (corresponding to D74G in human AChE) increased the K(S) to 4-10 mM in the Torpedo enzyme and to about 33 mM in the human enzyme. While the turnover number k(cat) was unchanged in the human D74G mutant, the roughly 20-fold decrease in acetylthiocholine affinity for the peripheral site in D74G resulted in a corresponding decrease in k(cat)/K(app), the second-order hydrolysis rate constant, in the mutant. In addition, we show that D74 is important in conveying to the acylation site an inhibitory conformational effect induced by the binding of fasciculin to the peripheral site. This inhibitory effect, measured by the relative decrease in the first-order phosphorylation rate constant k(OP) for the neutral organophosphate 7-[(methylethoxyphosphonyl)oxy]-4-methylcoumarin (EMPC) that resulted from fasciculin binding, decreased from 0.002 in wild-type human AChE to 0.24 in the D74G mutant.  相似文献   

11.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

12.
Flavocytochrome b2 catalyses the oxidation of L-lactate to pyruvate in yeast mitochondrial intermembrane space. Its flavoprotein domain is a member of a family of FMN-dependent 2-hydroxy-acid-oxidizing enzymes. Numerous solution studies suggest that the first step of the reaction consists of proton abstraction from lactate C2, leading to a carbanion that subsequently yields electrons to FMN. The crystal structure suggests that the enzyme base is His373, and that Tyr254 may be hydrogen bonded to the substrate hydroxyl. Studies carried out with the Y254F mutant [Dubois, J., Chapman, S.K., Mathews, F.S., Reid, G.A. & Lederer, F. (1990) Biochemistry 29, 6393-6400] showed that Tyr254 does not act as a base but stabilizes the transition state. As the mutation did not induce any change in substrate affinity, the question of the existence of the hydrogen bond in the Michaelis complex remained open. Similar results with glycolate oxidase, mutated at the same position, led to the suggestion that these enzymes actually operate via a hydride transfer mechanism [Macheroux, P., Kieweg, V., Massey, V., Soderlind, E., Stenberg, K. & Lindqvist, Y. (1993) Eur. J. Biochem. 213, 1047-1054]. In the present work, we have re-investigated the matter by analysing the properties of a Y254L mutant flavocytochrome b2, as well as the behaviour of the Y254F enzyme with two substrates other than lactate, and a series of inhibitors. The Y254L protein is less efficient with L-lactate than the wild-type enzyme by a factor of 500, but the substrate affinity is unchanged. In contrast, L-phenyllactate and mandelate, poor substrates (the latter acting more as an inhibitor), exhibit an increased affinity. In addition, the Y254L mutant enzyme is more efficient with phenyllactate than lactate as a substrate. In order to rationalize these observations, we have modelled phenyllactate and mandelate in the active site, using previously described modelling experiments with lactate as a starting point. The results indicate that mandelate cannot bind in an orientation allowing proton abstraction by His373, due to steric interference by the side chains of Ala198 and Leu230. It might possibly adopt a binding mode as proposed previously for lactate, which leads to a hydride transfer and with which the 198 and 230 side chains do not interfere. However, other researchers [Sinclair, R., Reid, G.A. & Chapman, S.K. (1998) Biochem. J. 333, 117-120] showed that A198G, L230A and A198G/L230A mutant enzymes exhibit a strongly improved mandelate dehydrogenase activity. These results indicate that relief of the steric crowding facilitates catalysis by enabling a better mandelate orientation at the active site, suggesting that its productive binding mode is similar to that proposed for lactate in the carbanion mechanism. The modelling studies therefore support the hypothesis of a carbanion mechanism for all substrates. In addition, we present the effect of the two mutations at position 254 on the binding of a number of competitive inhibitors (such as sulfite, D-lactate, propionate) and of inhibitors that are known to bind at the active site both when the flavin is oxidized and when it is in the semiquinone state (propionate, oxalate and L-lactate at high concentrations). Unexpectedly, the results indicate that the integrity of Tyr254 is necessary for the binding of these inhibitors at the semiquinone stage.  相似文献   

13.
o-Succinylbenzoate synthase (OSBS) from Amycolatopsis, a member of the enolase superfamily, catalyzes the Mn2+-dependent exergonic dehydration of 2-succinyl-6R-hydroxy-2,4-cyclohexadiene-1R-carboxylate (SHCHC) to 4-(2'-carboxylphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB) in the menaquinone biosynthetic pathway. This enzyme first was identified as an N-acylamino acid racemase (NAAAR), with the optimal substrates being the enantiomers of N-acetyl methionine. This laboratory subsequently discovered that this protein is a much better catalyst of the OSBS reaction, with the value of k(cat)/K(M), for dehydration, 2.5 x 10(5) M(-1) s(-1), greatly exceeding that for 1,1-proton transfer using the enantiomers of N-acetylmethionine as substrate, 3.1 x 10(2) M(-1) s(-1) [Palmer, D. R., Garrett, J. B., Sharma, V., Meganathan, R., Babbitt, P. C., and Gerlt, J. A. (1999) Biochemistry 38, 4252-8]. The efficiency of the promiscuous NAAAR reaction is enhanced with alternate substrates whose structures mimic that of the SHCHC substrate for the OSBS reaction, for example, the value of k(cat)/K(M) for the enantiomers of N-succinyl phenylglycine, 2.0 x 10(5) M(-1) s(-1), is comparable to that for the OSBS reaction. The mechanisms of the NAAAR and OSBS reactions have been explored using mutants of Lys 163 and Lys 263 (K163A/R/S and K263A/R/S), the putative acid/base catalysts identified by sequence alignments with other OSBSs, including the structurally characterized OSBS from Escherichia coli. Although none of the mutants display detectable OSBS or NAAAR activities, K163R and K163S catalyze stereospecific exchange of the alpha-hydrogen of N-succinyl-(S)-phenylglycine with solvent hydrogen, and K263R and K263 catalyze the stereospecific exchange the alpha-hydrogen of N-succinyl-(R)-phenylglycine, consistent with formation of a Mn2+-stabilized enolate anion intermediate. The rates of the exchange reactions catalyzed by the wild-type enzyme exceed those for racemization. That this enzyme can catalyze two different reactions, each involving a stabilized enediolate anion intermediate, supports the hypothesis that evolution of function in the enolase superfamily proceeds by pathways involving functional promiscuity.  相似文献   

14.
A recently discovered enzyme in the mandelate pathway of Pseudomonas putida, mandelamide hydrolase (MAH), catalyzes the hydrolysis of mandelamide to mandelic acid and ammonia. Sequence analysis suggests that MAH is a member of the amidase signature family, which is widespread in nature and contains a novel Ser-cis-Ser-Lys catalytic triad. Here we report the expression in Escherichia coli, purification, and characterization of both wild-type and His(6)-tagged MAH. The recombinant enzyme was stable, exhibited a pH optimum of 7.8, and was able to hydrolyze both enantiomers of mandelamide with little enantiospecificity. The His-tagged variant showed no significant change in kinetic constants. Phenylacetamide was found to be the best substrate, with changes in chain length or replacement of the phenyl group producing greatly decreased values of k(cat)/K(m). As with another member of this family, fatty acid amide hydrolase, MAH has the uncommon ability to hydrolyze esters and amides at similar rates. MAH is even more unusual in that it will only hydrolyze esters and amides with little steric bulk. Ethyl and larger esters and N-ethyl and larger amides are not substrates, suggesting that the MAH active site is very sterically hindered. Mutation of each residue in the putative catalytic triad to alanine resulted in total loss of activity for S204A and K100A, while S180A exhibited a 1500-fold decrease in k(cat) and significant increases in K(m) values. Overall, the MAH data are similar to those of fatty acid amide hydrolase and support the suggestion that there are two distinct subgroups within the amidase signature family.  相似文献   

15.
16.
Benzoylformate decarboxylase is a member of the family of enzymes that are dependent on the cofactor thiamin diphosphate. A structure of this enzyme binding (R)-mandelate, a competitive inhibitor, suggests that at least two hydrogen bonds are formed between the substrate, benzoylformate, and active site side chains. The first is between the carboxylate group of benzoylformate and the hydroxyl group of S26, and the second is between carbonyl group of the substrate and an imidazole nitrogen of H70. Steady-state kinetic studies indicate that the catalytic parameters are strongly affected in three active site mutants, S26A, H70A, and H281A. The K(m) of S26A was increased most dramatically, 25-fold more than that of the wild-type enzyme, while the K(i) of (R)-mandelate was increased 100-fold, suggesting that the serine hydroxyl is important for substrate binding. The k(cat) of H70A is reduced more than 3 orders of magnitude, strongly implicating this residue in catalysis, and H281 showed significant, but smaller magnitude, effects on both K(m) and k(cat). Stopped-flow experiments using an alternative substrate, p-nitrobenzoylformate, lead to kinetic resolution of the fate of key thiamin diphosphate-bound intermediates. Together, the experimental results suggest the following roles for residues in the active site. The residue H70 is important for the protonation of the 2-alpha-mandelyl-ThDP intermediate, thereby assisting in decarboxylation, and for the deprotonation of the 2-alpha-hydroxybenzyl-ThDP intermediate, aiding product release. H281 is involved in protonation of the enamine. Surprisingly, S26 appears to be involved not only in substrate binding but also in other steps of the reaction.  相似文献   

17.
A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ~2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process.  相似文献   

18.
Nagar M  Narmandakh A  Khalak Y  Bearne SL 《Biochemistry》2011,50(41):8846-8852
Mandelate racemase (EC 5.1.2.2) from Pseudomonas putida catalyzes the interconversion of the enantiomers of mandelic acid and a variety of aryl- and heteroaryl-substituted mandelate derivatives, suggesting that β,γ-unsaturation is a requisite feature of substrates for the enzyme. We show that β,γ-unsaturation is not an absolute requirement for catalysis and that mandelate racemase can bind and catalyze the racemization of (S)-trifluorolactate (k(cat) = 2.5 ± 0.3 s(-1), K(m) = 1.74 ± 0.08 mM) and (R)-trifluorolactate (k(cat) = 2.0 ± 0.2 s(-1), K(m) = 1.2 ± 0.2 mM). The enzyme was shown to catalyze hydrogen-deuterium exchange at the α-postion of trifluorolactate using (1)H NMR spectrocsopy. β-Elimination of fluoride was not detected using (19)F NMR spectroscopy. Although mandelate racemase bound trifluorolactate with an affinity similar to that exhibited for mandelate, the turnover numbers (k(cat)) were markedly reduced by ~318-fold, resulting in catalytic efficiencies (k(cat)/K(m)) that were ~400-fold lower than those observed for mandelate. These observations suggested that chemical steps on the enzyme were likely rate-determining, which was confirmed by demonstrating that the rates of mandelate racemase-catalyzed racemization of (S)-trifluorolactate were not dependent upon the solvent microviscosity. Circular dichroism spectroscopy was used to measure the rates of nonenzymatic racemization of (S)-trifluorolactate at elevated temperatures. The values of ΔH(?) and ΔS(?) for the nonenzymatic racemization reaction were determined to be 28.0 (±0.7) kcal/mol and -15.7 (±1.7) cal K(-1) mol(-1), respectively, corresponding to a free energy of activation equal to 33 (±4) kcal/mol at 25 °C. Hence, mandelate racemase stabilizes the altered trifluorolactate in the transition state (ΔG(tx)) by at least 20 kcal/mol.  相似文献   

19.
Recently we demonstrated that overexpression of the wild type insulin-like growth factor I receptor (IGF-IRWT) in 32D myeloid progenitor cells led to cell proliferation in response to interleukin 4 (IL-4) as well as insulin-like growth factor I (IGF-I) in the absence of insulin receptor substrate expression (Soon, L., Flechner, L., Gutkind, J. S., Wang, L. H., Baserga, R., Pierce, J. H., and Li, W. (1999) Mol. Cell. Biol. 19, 3816-3828). To understand the structural importance of insulin-like growth factor I receptor (IGF-IR) in mediating IL-4- and IGF-I-induced DNA synthesis, we transfected various mutants of IGF-IR to 32D cells. Our results show that most mutants, including Y1250F, Y1251F, Y1250F/Y1251F, S1280A/S1281A/S1282A/S1283A, Y1316F, and 1245d, still retained mitogenic response toward IGF-I or IL-4. However, the Y950F, Y1131F, and Y1135F mutants were not able to respond to either ligand. The H1293F/K1294R and 1293d mutants reduced response toward IGF-I but not to IL-4. Phosphorylation of Shc was greatly reduced in those three mutants that lost mitogenic response. The MAPK activity was much lower in Y1131F and Y1135F mutants, indicating the importance of the Shc/MAPK pathway in IGF-I-induced mitogenesis. Importantly, the synergistic effect of these two factors on DNA synthesis was not affected in cells expressing most of the mutants, even in those three that had lower mitogenic response toward a single ligand. These results suggest that an unidentified pathway(s) may be induced upon co-addition of IGF-I and IL-4 that sustains the intact mitogenesis.  相似文献   

20.
Dewanti AR  Xu Y  Mitra B 《Biochemistry》2004,43(7):1883-1890
(S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes (S)-mandelate to benzoylformate. In this work, we show that the ethyl and methyl esters of (S)-mandelic acid are substrates for MDH. Although the binding affinity of the neutral esters is 25-50-fold lower relative to the negatively charged (S)-mandelate, they are oxidized with comparable k(cat)s. Substrate analogues in which the carbonyl group on the C-1 carbon is replaced by other electron-withdrawing groups were not substrates. The requirement of a carbonyl group on the C-1 carbon in a substrate suggests that the negative charge developed during the reaction is stabilized by delocalization to the carbonyl oxygen. Arg277, a residue that is important in both binding and transition state stabilization for the activity with (S)-mandelate, is also critical for transition state stabilization for the esters, but not for their binding affinity. We previously showed that the substrate oxidation half-reaction with (S)-mandelate has two rate-limiting steps of similar activation energies and proceeds through the formation of a charge-transfer complex of an electron-rich donor and oxidized FMN [Dewanti, A. R., and Mitra, B. (2003) Biochemistry 42, 12893-12901]. This charge-transfer intermediate was observed with the neutral esters as well. The observation of this electron-rich intermediate for the oxidation of an uncharged substrate to an uncharged product, as well as the critical role of Arg277 in the reaction with the esters, provides further evidence that the MDH reaction mechanism is not a concerted transfer of a hydride ion from the substrate to the FMN, but involves the transient formation of a carbanion/ene(di)olate intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号