首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the catalase bioactivity and hydrogen peroxide (H(2)O(2)) production rate in human breast cancer (HBC) cell lines and compared these with normal human breast epithelial (HBE) cells. We observed that the bioactivity of catalase was decreased in HBC cells when compared with HBE cells. This was also accompanied by an increase in H(2)O(2) steady-state levels in HBC cells. Silencing the catalase gene led to a further increase in the steady-state level of H(2)O(2) which was also accompanied by an increase in growth rate of HBC cells. Catalase activity was up regulated on treatment with superoxide (O(2)(-)) scavengers such as pegylated SOD (PEG-SOD, indicating inhibition of catalase by the increased O(2)(-) produced by HBC cells. Transfection of either catalase or glutathione peroxidase to HBC cells decreased intracellular H(2)O(2) levels and led to apoptosis of these cells. The H(2)O(2) produced by HBC cells inhibited PP2A activity accompanied by increased phosphorylation of Akt and ERK1/2. The importance of catalase bioactivity in breast cancer was further confirmed as its bioactivity was also decreased in human breast cancer tissues when compared to normal breast tissues. We conclude that inhibition of catalase bioactivity by O(2)(-) leads to an increase in steady-state levels of H(2)O(2) in HBC cells, which in turn inhibits PP2A activity, leading to phosphorylation of ERK 1/2 and Akt and resulting in HBC cell proliferation.  相似文献   

2.
Multiple catalases in Bacillus subtilis.   总被引:22,自引:13,他引:9       下载免费PDF全文
Vegetative cells of Bacillus subtilis in logarithmic growth phase produced one catalase, labeled catalase 1, with a nondenatured molecular weight of 205,000. As growth progressed, other activity bands with slower electrophoretic mobilities on polyacrylamide gels appeared, including a series of bands with a common nondenatured molecular weight of 261,000, collectively labeled catalase 2, and a minor band, with a molecular weight of 387,000, labeled catalase 3. Purified spores contained only catalase 2, and it was not produced in spo0A- or spo0F-containing mutants. Strains deficient in catalase 1 or catalase 2 or both were selected after mutagenesis. Sensitivities of the two main catalases to NaCN, NaN3, hydroxylamine, and temperature were similar, but the apparent Kms for H2O2 differed, being 36.6 and 64.4 mM, respectively, for catalase 1 and catalase 2. The levels of catalase 1 increased 15-fold during growth into stationary phase and could be increased 30-fold by the addition of H2O2 to the medium. Catalase 2, which was not affected by H2O2, appeared only after the cells had reached stationary phase, and the maximum levels were only half of the basal level of catalase 1.  相似文献   

3.
Recent studies have suggested that the inhibition of lymphocyte mitogenesis by D-penicillamine in the presence of copper could be mediated by the formation and action of hydrogen peroxide. To explore this possibility further, we first sought evidence of H2O2 generation by D-penicillamine in a cell-free system by a) measurement of copper-catalyzed D-penicillamine oxidation and the requirement for oxygen in this process; b) direct measurement of H2O2 formation during D-penicillamine oxidation by the peroxidase-mediated oxidation of fluorescent scopoletin; and c) evaluation of the possible synthesis of O2- during D-penicillamine oxidation. The addition of copper to D-penicillamine in physiologic buffer catalyzed D-penicillamine oxidation in a dose-dependent fashion. D-penicillamine oxidation was accompanied by O2 consumption with a molar ratio of approximately 2:1, but did not occur under anaerobic conditions. Furthermore, D-penicillamine oxidation resulted in the formation of amounts of H2O2 stoichiometrically equivalent to oxygen consumption (i.e., 1:1). Copper-catalyzed D-penicillamine oxidation caused reduction of nitroblue tetrazolium in a reaction blocked by superoxide dismutase, suggesting the formation of O2-. Additional studies confirmed that D-penicillamine inhibited PHA-induced mitogenesis of lymphocytes in the presence of copper, and that catalase protected the cells from this action. Furthermore, when polymorphonuclear leukocytes were incubated with D-penicillamine plus copper, hexose monophosphate shunt activity increased up to threefold with abrogation of this stimulation by catalase. None of the effects of D-penicillamine plus copper on cells were diminished by hydroxyl radical scavengers mannitol or benzoate. These results are consistent with oxygen-dependent copper-catalyzed oxidation of D-penicillamine in aqueous solutions leading to the formation of O2- and H2O2. H2O2 produced by this reaction can inhibit lymphocyte mitogenesis and stimulate neutrophil hexose monophosphate shunt activity in vitro and may be relevant to the therapeutic effects of D-penicillamine in vivo.  相似文献   

4.
The localization of peroxidase activity in methanol-grown cells of the yeast Hansenula polymorphia has been studied by a method based on cytochemical staining with diaminobenzidine (DAB). The oxidation product of DAB occurred in microbodies, which characteristically develop growth on or methanol, and in the intracristate space of the mitochondria. The staining of microbodies was H2O2 dependent, appeared to be optimal at pH 10.5, diminished below pH 10 and was inhibited by 20 mM 3-amino 1,2,4 triazole (AT). In contrast to these observations, the reaction in the mitochondria was not H2O2 dependent and not notably affected by differences in pH in the range of 8.5 to 10.5. Microbodies and mitochondria were also stained when H2O2 was replaced by methanol. Appropriate control experiments indicated that in this case methanol oxidase generated the H2O2 for the peroxidative conversion of DAB by catalase. These results suggest that catalase is located in the microbodies of methanol-grown yeasts. A model for a possible physiological function of the microbodies during growth on methanol is put forward.  相似文献   

5.
Temporal patterns of hydrogen peroxide (H2O2) levels and total catalase activity are presented for post-imbibition scutella from six maize inbred lines expressing variable catalase activity. In all lines examined, H2O2 levels were highest during the initial days post-imbibition (1-2 dpi) and decreased thereafter, while total catalase activity was lowest during early dpi (1-2 dpi) and reached maximal activity at 4-6 dpi. In three of the six lines tested, a simple inverse correlation between catalase activity and H2O2 level was significant by Spearman's rank (P < 0.01). In addition to the general decline in H2O2 level throughout the dpi period, a reproducible increase in H2O2 level was observed at 4-5 dpi in five of six lines examined. Mutant lines lacking CAT-3 activity demonstrated a temporal shift in the occurrence of this increase. The role of total catalase (and individual isozymes) in controlling H2O2 levels during germination and the role of H2O2 as a potential regulator of catalase expression during germination are discussed.  相似文献   

6.
The characteristics of mutagenesis by glyoxal in Salmonella tester strains TA100 and TA104, and particularly a possible role of active oxygen species, were investigated. Glyoxal was converted into a non-mutagenic chemical with glutathione (GSH) by glyoxalase I, and the mutagenic activity was enhanced by the depletion of intracellular GSH. Glyoxal caused the reduction of nitro blue tetrazolium, which was suppressed by the addition of 2,5-diphenylfuran, superoxide dismutase (SOD) and catalase (CAT), scavengers of singlet oxygen (1O2), superoxide radical (O2-) and hydrogen peroxide (H2O2), respectively. However, only the 1O2 scavenger almost completely suppressed the mutagenic activity of glyoxal. Mutagenicity assays using strains pretreated with N,N-diethyldithiocarbamate of a SOD inhibitor and strains with low levels of SOD and CAT indicated that the mutagenesis by glyoxal was independent of intracellular levels of SOD and CAT, though glyoxal itself repressed them. Therefore, all the results suggest that 1O2 formed from glyoxal is related to its mutagenesis, but that neither O2- nor H2O2 is intracellularly predominantly related to it. The action of glyoxal against SOD and CAT, and the formation of glyoxal adducts with amino acids as their components are also discussed.  相似文献   

7.
Endogenous antioxidant defense systems are enhanced by various physiological stimuli including sublethal oxidative challenges, which induce tolerance to subsequent lethal oxidative injuries. We sought to evaluate the contributions of catalase and the glutathione system to the adaptive tolerance to H2O2. For this purpose, H9c2 cells were stimulated with 100 microM H2O2, which was the maximal dose at which no significant acute cell damage was observed. Twenty-four hours after stimulation, control and pretreated cells were challenged with a lethal concentration of H2O2 (300 microM). Compared with the control cells, pretreated cells were significantly tolerant of H2O2, with reduced cell lysis and improved survival rate. In pretreated cells, glutathione content increased to 48.20 +/- 6.38 nmol/mg protein versus 27.59 +/- 2.55 nmol/mg protein in control cells, and catalase activity also increased to 30.82 +/- 2.64 versus 15.46 +/- 1.29 units/mg protein in control cells, whereas glutathione peroxidase activity was not affected. Increased glutathione content was attributed to increased gamma-glutamylcysteine synthetase activity, which is known as the rate-limiting enzyme of glutathione synthesis. To elucidate the relative contribution of the glutathione system and catalase to tolerance of H2O2, control and pretreated cells were incubated with specific inhibitors of gamma-glutamyl cysteine synthetase (L-buthionine sulfoximine) or catalase (3-amino-1,2,4-triazole), and challenged with H2O2. Cytoprotection by the low-dose H2O2 pretreatment was almost completely abolished by L-buthionine sulfoximine, while it was preserved after 3-amino-1,2,4-triazole treatment. From these results, it is concluded that both the glutathione system and catalase can be enhanced by H2O2 stimulation, but increased glutathione content rather than catalase activity was operative in the tolerance of lethal oxidative stress.  相似文献   

8.
Hydrogen peroxide (H2O2)-resistant variants of the Chinese hamster ovary HA-1 line have been derived by culturing cells in progressively higher concentrations of H2O2 (greater than 200 days, in 50-800 microM H2O2). The H2O2-resistant phenotype has been stable for over 60 passages (240 days) following removal from the H2O2 stress. The resistant cells demonstrate both increased capacity to deplete exogenously added H2O2 from the growth medium and increased catalase activity. H2O2 resistance correlates well with catalase activity. An increase in chromosome number occurred in the cells adapted to 200-800 microM H2O2, but increases in aneuploidy and tetraploidy were not necessary for resistance. These results suggest that adaptation to chronic oxidative stress mediated by H2O2 in mammalian cells is accompanied by a stable heritable change in expression of catalase activity.  相似文献   

9.
The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequistie for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10(-3)M and for peroxidatic activity of catalase at 10(-1)M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10(-3)M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10(-1)M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2-0.5 mu) particles similar to small peroxisomes described in various other cell-types.  相似文献   

10.
The purpose of the present study was to evaluate the mechanism of microbial resistance to oxidative stress induced by photolysis of hydrogen peroxide (H(2)O(2)) in relation to microbial catalase activity. In microbicidal tests, Staphylococcus aureus and Candida albicans were killed and this was accompanied by production of hydroxyl radicals. C. albicans was more resistant to hydroxyl radicals generated by photolysis of H(2)O(2) than was S. aureus. A catalase activity assay demonstrated that C. albicans had stronger catalase activity; accordingly, catalase activity could be one of the reasons for the resistance of the fungus to photolysis of H(2)O(2). Indeed, it was demonstrated that C. albicans with strong catalase activity was more resistant to photolysis of H(2)O(2) than that with weak catalase activity. Kinetic analysis using a modified Lineweaver-Burk plot also demonstrated that the microorganisms reacted directly with hydroxyl radicals and that this was accompanied by decomposition of H(2)O(2). The results of the present study suggest that the microbicidal effects of hydroxyl radicals generated by photolysis of H(2)O(2) can be alleviated by decomposition of H(2)O(2) by catalase in microorganisms.  相似文献   

11.
12.
In the absence of reductant substrates, and with excess H2O2, peroxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) shows the kinetic behaviour of a suicide inactivation, H2O2 being the suicide substrate. From the complex (compound I-H2O2), a competition is established between two catalytic pathways (the catalase pathway and the compound III-forming pathway), and the suicide inactivation pathway (formation of inactive enzyme). A kinetic analysis of this system allows us to obtain a value for the inactivation constant, ki = (3.92 +/- 0.06) x 10(-3) x s-1. Two partition ratios (r), defined as the number of turnovers given by one mol of enzyme before its inactivation, can be calculated: (a) one for the catalase pathway, rc = 449 +/- 47; (b) the other for the compound III-forming pathway, rCoIII = 2.00 +/- 0.07. Thus, the catalase activity of the enzyme and, also, the protective role of compound III against an H2O2-dependent peroxidase inactivation are both shown to be important.  相似文献   

13.
The present study tested the hypothesis that membrane-bound NAD(P)H oxidase in coronary arterial myocytes (CAMs) is capable of producing superoxide (O(2)(*-)) toward extracellular space to exert an autocrine- or paracrine-like action in these cells. Using a high-speed wavelength-switching fluorescent microscopic imaging technique, we simultaneously monitored the binding of dihydroethidium-oxidizing product to exogenous salmon testes DNA trapped outside CAMs and to nuclear DNA as indicators of extra- and intracellular O(2)(*-) production. It was found that a muscarinic agonist oxotremorine (OXO; 80 microM) increased O(2)(*-) levels more rapidly outside than inside CAMs. In the presence of superoxide dismutase (500 U/ml) plus catalase (400 U/ml) and NAD(P)H oxidase inhibitor diphenylene iodonium (50 microM) or apocynin (100 microM), these increases in extra- and intracellular O(2)(*-) levels were substantially abolished or attenuated. The O(2)(*-) increase outside CAMs was also confirmed by detecting oxidation of nitro blue tetrazolium and confocal microscopic localization of Matrigel-trapped OxyBURST H(2)HFF Green BSA staining around these cells. By electron spin resonance spectrometry, the extracellular accumulation of O(2)(*-) was demonstrated as a superoxide dismutase-sensitive component outside CAMs. Furthermore, RNA interference of NAD(P)H oxidase subunits Nox1 or p47 markedly blocked OXO-induced increases in both extra- and intracellular O(2)(*-) levels, whereas small inhibitory RNA of Nox4 only attenuated intracellular O(2)(*-) accumulation. These results suggest that Nox1 represents a major NAD(P)H oxidase isoform responsible for extracellular O(2)(*-) production. This rapid extracellular production of O(2)(*-) seems to be unique to OXO-induced M(1)-receptor activation, since ANG II-induced intra- and extracellular O(2)(*-) increases in parallel. It is concluded that the outward production of O(2)(*-) via NAD(P)H oxidase in CAMs may represent an important producing pattern for its autocrine or paracrine actions.  相似文献   

14.
A comparative kinetic study of extracellular catalases produced by Penicillium piceum F-648 and their variants adapted to H2O2 was performed in culture liquid filtrates. The specific activity of catalase, the maximum rate of catalase-induced H2O2 degradation (Vmax),Vmax/KM ratio, and the catalase inactivation rate constant in the enzymatic reaction (kin, s-1) were estimated in phosphate buffer (pH 7.4) at 30 degrees C. The effective constant representing the rate of catalase thermal inactivation (kin*, s-1) was determined at 45 degrees C. In all samples, the specific activity and KM for catalase were maximum at a protein concentration in culture liquid filtrates of 2.5-3.5 x 10(-4) mg/ml. The effective constants describing the rate of H2O2 degradation (k, s-1) were similar to that observed in the initial culture. These values reflected a twofold decrease in catalase activity in culture liquid filtrates. We hypothesized that culture liquid filtrates contain two isoforms of extracellular catalase characterized by different activities and affinities for H2O2. Catalases from variants 5 and 3 with high and low affinities for H2O2, respectively, had a greater operational stability than the enzyme from the initial culture. The method of adaptive selection for H2O2 can be used to obtain fungal variants producing extracellular catalases with improved properties.  相似文献   

15.
In rat liver, three different enzymes with peroxidatic activity are demonstrated with modifications of the DAB-technique: peroxidase in the endoplasmic reticulum of Kupffer cells, catalase in peroxisomes and cytochrome oxidase in mitochondria. The major problem of the DAB-methods is their limited specificity so that often in tissues incubated for one enzyme the other two proteins are also stained simultaneously. We have studied the conditions for selective staining of each of these three enzymes in rat liver fixed either by perfusion with glutaraldehyde or by immersion in a modified Karnovsky's glutaraldehyde-formaldehyde fixative. The observations indicate that in perfusion fixed material selective staining can be obtained by reduction of the incubation time (5 min) and the use of optimal conditions for each enzyme. In livers fixed by immersion the distribution of the staining is patchy and irregular and usually longer incubation times (15-30 min) are required. Selective staining of peroxidase in Kupffer cells was obtained by brief incubation at room temperature in a medium containing 2.5 mM DAB in cacodylte buffer pH 6.5 and 0.02% H2O2. The exclusive staining for cytochrome oxidase in cristae of mitochondria was achieved after short incubation in 2.5 mM DAB in phosphate buffer pH 7.2 containing 0.05% cytochrome c. For selective demonstration of catalase in peroxisomes the tissue was incubated in 5 mM DAB in Teorell-Stenhagen (or glycine-NaOH) buffer at pH 10.5 and 0.15% H2O2. The prolongation of the incubation time in peroxidase medium caused marked staining of both mitochondria and peroxisomes. In the cytochrome oxidase medium longer incubations led to slight staining of peroxisomes. The catalase medium was quite selective for this enzyme so that even after incubation for 120 min only peroxisomes stained.  相似文献   

16.
The oxidation of dianisidine, photosensitized by riboflavin, is accelerated by superoxide dismutase. Polyacrylamide gel electropherograms soaked in riboflavin plus dianisidine and subsequently illuminated develop stable brown bands at positions bearing superoxide dismutase activity. This constitutes a new, convenient, and advantageous activity stain for this class of enzymes. Peroxidases are also stained by this procedure due to the photochemical production of H2O2. This does not constitute an interference with the specificity of the stain, since peroxidase bands develop more slowly than superoxide dismutase bands and can be further identified through the use of inhibitors or of independent staining for peroxidase. The new, positive activity stain for superoxide dismutases can be applied to crude extracts of cells.  相似文献   

17.
The use of 3,3′,5,5′-tetramethylbenzidine-H2O2 as a stain for the peroxidase activity of cytochrome P-450 (or cytochrome P-450 in sodium dodecyl sulfate polyacrylamide gels is described in this report. This reagent can be used to detect very low levels of heme-associated peroxidase activity. The blue-stained bands on polyacrylamide gels are distinet, and the color is stable. The stained gels can be photographed or scanned at 690 nm because the gel background remains clear. The stain is easily removed from the gels to permit subsequent protein staining. Staining first for peroxidase activity has no effect on the subsequent protein staining profile. The peroxidase activity of cytochrome P-450 (or cytochrome P-420) in immunoprecipitates in Ouchterlony double diffusion plates can also be detected using this reagent.  相似文献   

18.
Tempol catalyzes the formation of H(2)O(2) from superoxide and relaxes blood vessels. We tested the hypothesis that the generation of H(2)O(2) by tempol in vascular smooth muscle cells during oxidative stress contributes to the vasorelaxation. Tempol and nitroblue tetrazolium (NBT) both metabolize superoxide in vascular smooth muscle cells, but only tempol generates H(2)O(2). Rat pressurized mesenteric arteries were exposed for 20 min to the thromboxane-prostanoid receptor agonist, U-46619, or norepinephrine. During U-46619, tempol caused a transient dilation (22 +/- 2%), whereas NBT was ineffective (2 +/- 1%), and neither dilated vessels constricted with norepinephrine, which does not cause vascular oxidative stress. Neither endothelium removal nor blockade of K(+) channels with 40 mM KCl affected the tempol-induced dilation, but catalase blunted the tempol dilation by 53 +/- 7%. Tempol, but not NBT, increased H(2)O(2) in rat mesenteric vessels detected with dichlorofluorescein. To test physiological relevance in vivo, topical application of tempol caused a transient dilation (184 +/- 20%) of mouse cremaster arterioles exposed to angiotensin II for 30 min, which was not seen with NBT (9 +/- 4%). The vasodilation to tempol was reduced by 68 +/- 6% by catalase. We conclude that the transient relaxation of blood vessels by tempol after prolonged exposure to U-46619 or angiotensin II is mediated in part via production of H(2)O(2) and is largely independent of the endothelium and potassium channels.  相似文献   

19.
Activities of the antioxidant enzymes involved in superoxide anion (O2-) and hydrogen peroxide (H2O2) metabolism were determined and the contents of O2 and 14202 were also measured. All concentrations of sahcylic acid (SA) tested (0.5, 1.0, 2.5 and 5.0 mmoL/L) significantly enhanced superoxide dismutase (SOD) and peroxidase (POD) activities not only in the first treated true leaf (leaf 1 ) but also in the second untreated true leaf (leaf 2) of Cucumis sativus L. When the leaves were treated with 1 mmol/L SA within 6 to 72 h, the activity of POD increased by 22 % to 67% in the treated leaf 1 and by 14% to 86% in the untreated leaf 2. However, no changes were observed during 3 h after treatment and at 96 h following treatment. Measurement of O2- and H202 showed that there was a significant decrease in 02' content and an increase in H202 content after SA treatment, but catalase (CAT) activity was only slighfiy inhibited and this suggested that the reason of the increase in H2O2 by SA treatment is not due to the inhibition of CAT but rather the increase in SOD activity. It was also found that SA at all concentrations tested could not induce new SOD isozyme but it induced 1 to 2 bands of new POD isozyme within one day after treatment. The results indicate that SA might involve in the regulation of antioxidant enzymes.  相似文献   

20.
Hog thyroid plasma membrane preparations containing a Ca2+-regulated NADPH-dependent H2O2-generating system were studied. The Ca2+-dependent reductase activities of ferricytochrome c, 2,6-dichloroindophenol, nitroblue tetrazolium, and potassium ferricyanide were tested and the effect of these scavengers on H2O2 formation, NADPH oxidation and O2 consumption were measured, with the following results. 1. Thyroid plasma membrane Ca2+-independent cytochrome c reduction was not catalyzed by the NADPH-dependent H2O2-generating system. This activity was superoxide-dismutase-insensitive. 2.Of the three other electron scavengers tested, only K3Fe(CN)6 was clearly, but partially reduced in a Ca2+-dependent manner. 3. Though the NADPH-dependent reduction of nitroblue tetrazolium was very low and superoxide-dismutase-insensitive, nitroblue tetrazolium inhibited O2 consumption, H2O2 formation and NADPH oxidation, indicating that nitroblue tetrazolium inhibits the H2O2-generating system. We conclude that the thyroid plasma membrane H2O2-generating system does not or liberate O2- and that Ca2+ controls the first step (NADPH oxidation) of the H2O2-generating system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号