首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In guinea-pig brain, [3H]bremazocine has a binding capacity of 27.2 pmol/g wet tissue, which is statistically different from that of [3H]ethylketazocine (14.7 pmol/g wet tissue) or the sum of the individual binding capacities of mu-, delta-, and kappa-selective ligands (15.0 pmol/g wet tissue). Saturation studies of [3H]bremazocine performed in the presence of unlabelled mu-, delta-, and kappa-blockers still reveal a homogeneous population of binding sites. [3H]Bremazocine under suppressed conditions displays at these sites a Kd of 2.51 nM with a binding capacity of 9.15 pmol/g wet tissue. We have performed the pharmacological characterization of these additional opioid binding sites. Displacement curves measured with a number of opioid substances were all best fitted to a one-site model. The stereoselectivity of these additional sites was demonstrated by using two groups of stereoisomers. Oripavine and benzomorphan opioids were among the most potent drugs at the [3H]bremazocine sites (mu + delta + kappa suppressed). Diprenorphine, bremazocine, cyclazocine, and ethylketazocine displayed apparent affinities constants (1/Ka) of 8.66, 7.57, 21.4, and 38.0 nM, respectively at those sites. The kappa-selective drugs U50488, U69593, PD117302, and tifluadom were inhibitors of the binding of [3H]bremazocine at these sites with apparent affinities of 113, 268, 76.9, and 47.9 nM. All mu- or delta-selective drugs tested in this study have caused weak or no inhibition of the binding. Correlation analyses were done between the different affinities measured at the [3H]bremazocine sites (mu + delta + kappa suppressed) and those observed at the known mu-, delta-, and kappa-sites of the guinea-pig brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Previous study has shown that cholecystokinin (CCK) octapeptide (CCK-8) suppressed the binding of opioid receptors to the universal opioid agonist [3H]etorphine. In the present study, highly selective tritium-labeled agonists for the mu-[(tryrosyl-3,5-3H][D-Ala2,MePhe4,Gly-ol5]enkephalin ([3H]DAGO], delta- ([tyrosyl-3,5-3H][D-Pen2,5]enkephalin ([3H]DPDPE], and kappa- ([3H]U69,593) opioid receptors were used to clarify which type(s) of opioid receptor in rat brain homogenates is suppressed by CCK-8. In the competition experiments, CCK-8 suppressed the binding of [3H]DAGO and [3H]U69,593 but not that of [3H]DPDPE to the respective opioid receptor. This effect was blocked by the CCK antagonist proglumide at 1 mumol/L. In the saturation experiments, CCK-8 at concentrations of 0.1 nmol/L to 1 mumol/L decreased the Bmax of [3H]DAGO binding sites without affecting the KD; on the other hand, CCK-8 increased the KD of [3H]U69,593 binding without changing the Bmax. The results suggest that CCK-8 inhibits the binding of mu- and kappa-opioid receptors via the activation of CCK receptors.  相似文献   

3.
Insertion of bulky tertiobutyl groups into the sequence of [D-Ser2,Leu5]enkephalyl-Thr6 leads to a conformationally induced large increase in selectivity toward rat brain delta-opioid binding sites, as shown by the ratio of apparent affinities for mu and delta receptors of [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6,KI(mu)/KI(delta) = 130, and [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 (O-tert-butyl),KI(mu)/KI(delta) = 280. In addition to a selectivity similar to that of the cyclic compounds [D-Pen2, D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin, the affinity of [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 for the delta sites of rat brain membranes is significantly better (KD = 2.2 nM) than that of [3H][D-Pen2,D-Pen5]enkephalin (KD approximately 8.5 nM). Therefore, [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 seems to be the most appropriate delta-probe currently available for binding studies. Moreover, the lipophilic and protected peptide [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6(O-tert-butyl) behaves as the most specific ligand for the delta-opioid binding sites and appears appropriate for in vivo investigations. The inactive analogue [D-Thr2(O-tert-butyl),Leu5]enkephalyl-Thr6 might serve as a negative control in biochemical or pharmacological studies.  相似文献   

4.
The range of delta-selectivity of linear and cyclic analogues of enkephalin in rat brain was found to be: [D-Pen2, L-Pen5] enkephalin (DPLPE) greater than [D-Pen2, D-Pen5] enkephalin (DPDPE) greater than [D-Thr2, Leu5] enkephalyl-Thr6 (DTLET) greater than [D-Ser2, Leu5] enkephalyl-Thr6 (DSLET). Saturation experiments performed with [3H]DPDPE and [3H]DTLET in NG108-15 cells and rat brain showed similar binding capacities for both the ligands, but the delta-affinity of [3H]DTLET (KD approximately 1.2 nM) was much better than that of [3H]DPDPE (KD approximately 7.2 nM). The rather low delta-affinity of DPDPE induced high experimental errors cancelling the benefit of its better delta-selectivity. Binding experiments in rat or guinea-pig brains showed, in both cases, the better delta-selectivity of [3H]DTLET compared to [3H]DSLET. The former peptide remains at this time the most appropriate radioactive probe for binding studies of delta-receptor.  相似文献   

5.
In synaptosomal membranes from rat brain cortex, in the presence of 150 mM NaCl, the opioid antagonist [3H]naltrexone bound to two populations of receptor sites with affinities of 0.27 and 4.3 nM, respectively. Guanosine-5'-(3-thiotriphosphate) had little modulating effect and did not alter the biphasic nature of ligand binding. On the other hand, receptor-selective opioids differentially inhibited the two binding components of [3H]naltrexone. As shown by nonlinear least-squares analysis, the mu opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol or sufentanil abolished high-affinity [3H]naltrexone binding, whereas the delta-selective ligands [D-Pen2,D-Pen5]enkephalin, ICI 174,864, and oxymorphindole inhibited and eventually eliminated the low-affinity component in a concentration-dependent manner. These results indicate that, in contrast to the guanine nucleotide-sensitive biphasic binding of opioid-alkaloid agonists, the heterogeneity of naltrexone binding in brain membranes reflects ligand interaction with different opioid-receptor types.  相似文献   

6.
Treatment of rat brain membranes with the irreversible opioid ligand cis-3-methylfentanylisothiocyanate (Superfit) was used to reduce gradually the number of available binding sites for the delta-selective agonist [3H][D-Ser2,Leu5]enkephalin-Thr6 ([ 3H]DSLET). Subsequently, the correlation between ligand binding and low-Km GTPase was investigated. Alkylation with 10 microM and 25 microM Superfit inactivated 66% and 71% of high-affinity (KD, 1 nM) binding sites without decreasing the affinity of the remaining sites and the stimulation of low-Km GTPase by DSLET. Following exposure of the membranes to 50 microM and 75 microM Superfit, ligand binding was confined to the low-affinity (KD, 20 nM) sites. In these membranes, the delta-agonists DSLET and [D-Pen2,D-Pen5]enkephalin still stimulated low-Km GTPase, and these effects were blocked by ICI 174864 (N,N-diallyl-Tyr-AIB-AIB-Phe-Leu-OH; AIB, alpha-aminoisobutyric acid), a delta-selective antagonist. A similar relationship between low-affinity ligand binding and GTPase stimulation was observed following alkylation of the delta-opioid receptor with the non-selective irreversible antagonist beta-chlornaltrexamine in the presence of protective concentrations of DSLET. The results reveal spare receptor sites in the coupling of the delta-opioid receptor to low-Km GTPase in brain and identify low-affinity ligand binding as a functional component in the process.  相似文献   

7.
In synaptosomal membranes from rat and monkey brain cortex, the addition of petroselenic (18:1, cis-delta 6) acid, oleic (18:1, cis-delta 9) acid, and vaccenic (18:1, cis-delta 11) acid or their corresponding methyl esters at 0.5 mumol/mg of membrane protein caused a similar 7-10% decrease in the microviscosity of the membrane core, whereas at the membrane surface the microviscosity was reduced 5-7% by the fatty acids but only 1% by their methyl esters. Concomitantly, the fatty acids, but not the methyl esters, inhibited the specific binding of the tritiated mu-, delta-, and kappa-opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol (DAMGO), [D-Pen2,D-Pen5]enkephalin (DPDPE), and U69,593, respectively. As shown with oleic acid, the sensitivity of opioid receptor binding toward inhibition by fatty acids was in the order delta greater than mu much greater than kappa, whereby the binding of [3H]DPDPE was abolished, but significant inhibition of [3H]U69,593 binding, determined in membranes from monkey brain, required membrane modification with a twofold higher fatty acid concentration. Except for the unchanged KD of [3H]U69,593, the inhibition by oleic acid involved both the Bmax and affinity of opioid binding. Cholesteryl hemisuccinate (0.5-3 mumol/mg of protein), added to membranes previously modified by fatty acids, reversed the fluidization caused by the latter compounds and restored inhibited mu-, delta-, and kappa-opioid binding toward control values. In particular, the Bmax of [3H]-DPDPE binding completely recovered after being undetectable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   

9.
X Z Khawaja  I C Green 《Life sciences》1992,50(17):1273-1281
The effect of glucose on the binding characteristics of opiate receptor subtypes was investigated in brain membranes from normoglycaemic lean Aston (C57BL/6J) mice using [3H][D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO), [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) and [3H]U69,593 as selective ligands for mu, delta and kappa opiate receptors respectively. The equilibrium dissociation constants (Kd) and maximal binding capacities (Bmax) of [3H]DAMGO and [3H]DPDPE were unaltered by 20mM glucose in vitro. Similarly, [3H]U69,593 binding was not modified by increasing the concentration of glucose from 0 to 20mM (P between 0.10 and 0.05), or by the presence of 20mM fructose and of 20mM 3-O-me-glucose, a non-metabolisable sugar, in the incubation medium. The nonselective opiate ligand, [3H]diprenorphine, bound with similar affinity and binding capacity to brain membranes prepared from control and streptozotocin-diabetic Swiss (CD1) mice. The addition of 20mM glucose or of 20mM fructose in vitro induced no changes in their binding parameters. The affinity and binding capacity of [3H]U69,593 to STZ-diabetic Swiss mouse brain membranes was not significantly different to that of normoglycaemic controls; 20mM glucose in vitro had no effect on ligand binding to kappa sites in STZ-diabetic mouse brain membranes. We conclude that glucose does not interact directly with the opiate receptor to modfy it in such as way as could explain the altered sensitivity to different opioid agonists seen in obese and hyperglycaemic animal models in vivo.  相似文献   

10.
Opioid receptors have been characterized in Drosophila neural tissue. [3H]Etorphine (universal opioid ligand) bound stereospecifically, saturably, and with high affinity (KD = 8.8 +/- 1.7 nM; Bmax = 2.3 +/- 0.2 pmol/mg of protein) to Drosophila head membranes. Binding analyses with more specific ligands showed the presence of two distinct opioid sites in this tissue. One site was labeled by [3H]dihydromorphine ([3H]DHM), a mu-selective ligand: KD = 150 +/- 34 nM; Bmax = 3.0 +/- 0.6 pmol/mg of protein. Trypsin or heat treatment (100 degrees C for 15 min) of the Drosophila extract reduced specific [3H]DHM binding by greater than 80%. The rank order of potency of drugs at this site was levorphanol greater than DHM greater than normorphine greater than naloxone much greater than dextrorphan; the mu-specific peptide [D-Ala2,Gly-ol5]-enkephalin and delta-, kappa-, and sigma-ligands were inactive at this site. The other site was labeled by (-)-[3H]ethylketocyclazocine ((-)-[3H]EKC), a kappa-opioid, which bound stereospecifically, saturably, and with relatively high affinity to an apparent single class of receptors (KD = 212 +/- 25 nM; Bmax = 1.9 +/- 0.2 pmol/mg of protein). (-)-[3H]EKC binding could be displaced by kappa-opioids but not by mu-, delta-, or sigma-opioids or by the kappa-peptide dynorphin. Specific binding constituted approximately 70% of total binding at 1 nM and approximately 50% at 800 nM for all three radioligands ([3H]etorphine, [3H]EKC, and [3H]DHM). Specific binding of the delta-ligands [3H][D-Ala2,D-Leu5]-enkephalin and [3H][D-Pen2,D-Pen5]-enkephalin was undetectable in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
[3H]Guanidinoethylmercaptosuccinic acid (GEMSA), a potent inhibitor of enkephalin convertase, binds to membrane and soluble fractions of tissue homogenates saturably and reversibly with a KD of 6 nM. Specific binding accounts for greater than 95% of total binding. The highest levels of [3H]GEMSA binding occur in the pituitary gland and the brain, with much lower levels in peripheral tissues. GEMSA, guanidinopropylsuccinic acid, 2-mercaptomethyl-3-guanidinothiopropionic acid, aminopropylmercaptosuccinic acid, [Leu] enkephalin-Arg, and [Met]enkephalin-Arg inhibit [3H] GEMSA binding to crude rat brain homogenates, to crude bovine pituitary homogenates, and to pure enkephalin convertase with equal potencies. Their Ki values against [3H]GEMSA binding are similar to their Ki values against enkephalin convertase activity. EDTA and 1,10-phenanthroline markedly inhibit both binding and enzymatic activity. The ratio of the Vmax for 5-dimethylaminonaphthalene-1-sulfonyl-Phe-Leu-Arg to the Bmax (maximal number of binding sites) for [3H]GEMSA is about 2,000 min-1 in both pure enzyme preparations and crude tissue homogenates. [3H] GEMSA binding activity is found only in fractions containing enkephalin convertase during enzyme purification from bovine pituitary by L-arginine affinity chromatography. These data confirm that [3H]GEMSA binds only to enkephalin convertase in crude homogenates under our assay conditions. CoCl2 activates enzyme activity without altering the Ki of GEMSA against enzymatic hydrolysis and weakly inhibits [3H] GEMSA binding by increasing the KD.  相似文献   

12.
1. The autoradiographic distribution of kappa opioid receptor binding sites in human brain was examined using two radiolabeled probes, namely [3H]U69,593 and [3H]bremazocine. 2. [3H]U69,593 binding was performed in the absence of blockers for other sites, while [3H]bremazocine binding was investigated in the presence of saturating concentrations of mu and delta blockers to ensure selective labeling of kappa opioid receptors. 3. Our results show that the autoradiographic distribution of [3H]U69,593 and [3H]bremazocine (plus blockers) binding sites is identical, with high densities of sites found in deep cortical layers and claustrum. 4. This indicates that [3H]U69,593 is a highly selective ligand of the kappa opioid receptor type.  相似文献   

13.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

14.
[D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is a synthetic enkephalin analog which contains a sulfhydryl group. DALCE binds with high affinity to delta-receptors, with moderate affinity to mu-receptors, and with negligible affinity to kappa-receptors. Pretreatment of rat brain membranes with DALCE resulted in concentration-dependent loss of delta-binding sites. Using 2 nM [3H][D-Pen2,D-Pen5]enkephalin (where Pen represents penicillamine) to label delta-sites, 50% loss of sites occurred at about 3 microM DALCE. Loss of sites was not reversed by subsequent incubation in buffer containing 250 mM NaCl and 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), conditions which cause dissociation of opiate agonists. By contrast, the enkephalin analogs [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, [D-Pen2,D-Pen5]enkephalin, and [D-Ala2,D-Leu5,Lys6]enkephalin were readily dissociated by NaCl and Gpp(NH)p, producing negligible loss at 3 microM. This suggests that DALCE binds covalently to the receptors. Pretreatment of membranes with the reducing agents dithiothreitol and beta-mercaptoethanol had no effect on opiate binding. Thus, loss of sites required both specific recognition by opiate receptors and a thiol group. The irreversible effect of DALCE was completely selective for delta-receptors. Pretreatment with DALCE had no effect on binding of ligands to mu- or kappa-receptors. The effect of DALCE on delta-binding was: 1) markedly attenuated by inclusion of dithiothreitol in the preincubation buffer, 2) partially reversed by subsequent incubation with dithiothreitol, 3) slightly enhanced when converted to the disulfide-linked dimer, and 4) prevented by blocking the DALCE sulfhydryl group with N-ethylmaleimide or iodoacetamide. These results indicate that DALCE binds covalently to delta-receptors by forming a disulfide bond with a sulfhydryl group in the binding site. The mechanism may involve a thiol-disulfide exchange reaction.  相似文献   

15.
The availability of the bispenicillamine enkephalin [3H] [D-Pen2,D-Pen5]enkephalin ([3H]DPDPE) a highly selective ligand for delta-opioid receptors, has made possible a more definitive examination of the ontogeny of this receptor subtype. In this report, the binding characteristics of [3H]DPDPE in 5-day-old neonatal (P-5) and adult rat brain are compared. Analysis of saturation curves as well as homologous displacement data revealed no significant difference in the binding affinity of [3H]DPDPE between P-5 animals and adults. Conversely, the binding capacity increased fivefold during this period. The delta-specificity of the sites was further proven by competition experiments with mu- and delta-selective ligands. Mn2+ (0.5 mM) elevated [3H]DPDPE specific binding by lowering the Kd, whereas 50 microM 5'-guanylylimidodiphosphate inhibited it by decreasing the total number of high-affinity binding sites in both P-5 animals and adults. Pertussis toxin-catalyzed ADP ribosylation experiments revealed the presence of 40-kDa proteins, with a molecular mass corresponding to G protein subunits alpha i/alpha o, as early as 1 h after birth. There was a low, but detectable, basal low-Km GTPase activity in P-5 animals, which increased fivefold during postnatal development. The present report establishes the existence of high-affinity [3H]DPDPE binding as well as GTP-regulatory proteins 5 days after birth. Yet, heterologous competition studies and ionic effects suggest that neonatal binding sites differ from adult receptors. Whether the neonatal sites are newly synthesized, incompletely processed sites or a developmentally programmed isoform remains to be determined.  相似文献   

16.
Modulation of Opioid Receptor Binding by Cis and Trans Fatty Acids   总被引:1,自引:2,他引:1  
In synaptosomal brain membranes, the addition of oleic acid (cis), elaidic acid (trans), and the cis and trans isomers of vaccenic acid, at a concentration of 0.87 mumol of lipid/mg of protein, strongly reduced the Bmax and, to a lesser degree, the binding affinity of the mu-selective opioid [3H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol ([3H]DAMGO). At comparable membrane content, the cis isomers of the fatty acids were more potent than their trans counterparts in inhibiting ligand binding and in decreasing membrane microviscosity, both at the membrane surface and in the core. However, trans-vacenic acid affected opioid receptor binding in spite of just marginally altering membrane microviscosity. If the receptors were uncoupled from guanine nucleotide regulatory protein, an altered inhibition profile was obtained: the impairment of KD by the fatty acids was enhanced and that of Bmax reduced. Receptor interaction of the delta-opioid [3H](D-Pen2,D-Pen5)enkephalin was modulated by lipids to a greater extent than that of [3H]DAMGO: saturable binding was abolished by both oleic and elaidic acids. The binding of [3H]naltrexone was less susceptible to inhibition by the fatty acids, particularly in the presence of sodium. In the absence of this cation, however, cis-vaccenic acid abolished the low-affinity binding component of [3H]naltrexone. These findings support the membrane model of opioid receptor sequestration depicting different ionic environments for the mu- and delta-binding sites. The results of this work show distinct modulation of different types and molecular states of opioid receptor by fatty acids through mechanisms involving membrane fluidity and specific interactions with membrane constituents.  相似文献   

17.
FK-33-824 (Try-D-Ala-Gly-MePhe-Met(O)ol) is a potent enkephalin analog which has been tritium labelled with a high specific radioactivity (41 Ci/mmole). The labelled drug exhibits specific and saturable binding to rat brain crude mitochondrial fraction. Specific binding is inhibited by low concentrations of morphine, levallorphan and beta-endorphin, suggesting that FK 33-824 [3H] binds preferentially to mu opiate sites. Binding studies at equilibrium and kinetics of formation and dissociation of the labelled ligand-receptor complex indicate that FK 33-824 [3H] binds to two classes of specific sites. Their affinities are distinguishable at 0 degree (KD = 1.3 and 5.8 nM) and very close to each other at 37 degree (KD = 1.9 nM).  相似文献   

18.
Binding of the alpha-adrenergic agonist [3H]clonidine and the alpha-adrenergic antagonist [3H]WB-4101 exhibited multiple binding site characteristics in both rat frontal cortex and cerebellum. Kinetic analysis of the dissociation of both radioligands in rat frontal cortex suggests two high affinity sites for each ligand. Competition of various noradrenergic agonists and antagonists for [3H]WB-4101 binding yielded shallow competition curves, with Hill coefficients ranging from 0.45 to 0.7. This further suggests multiplicity in [3H]WB-4101 binding. In the rat cerebellum, competition of various noradrenergic drugs for [3H]clonidine binding yielded biphasic competition curves. Furthermore Scatchard analysis of [3H]clonidine binding in rat cerebellum showed two high affinity sites with KD = 0.5 nM and 1.9 nM, respectively. Competition of various noradrenergic drugs for [3H]WB-4101 binding in the rat cerebellum yielded biphasic competition curves. Lesioning of the dorsal bundle with 6-hydroxydopamine did not significantly affect the binding of either [3H]clonidine or [3H]WB-4101. These findings for both [3H]clonidine and [3H]WB-4101 binding in rat frontal cortex and cerebellum can be explained by the existence of postsynaptic binding sites for both 3H ligands.  相似文献   

19.
A variety of data support the existence of an opioid receptor complex composed of distinct but interacting mu cx and delta cx binding sites, where "cx" indicates "in the complex." The ability of subantinociceptive doses of [Leu5]enkephalin and [Met5]enkephalin to potentiate and attenuate morphine-induced antinociception, respectively, is thought to be mediated via their binding to the delta cx binding site. [D-Pen2,D-Pen5]Enkephalin also modulates morphine-induced antinociception, but has very low affinity for the delta cx binding site in vitro. In the present study, membranes were depleted of their delta ncx binding sites by pretreatment with the site-directed acylating agent, (3S,4S)-(+)-trans-N-[1-[2-(4-isothiocyanato)phenyl)-ethyl]-3-methy l-4- piperidyl]-N-phenylpropaneamide hydrochloride, which permits selective labeling of the delta cx binding site with [3H][D-Ala2,D-Leu5]enkephalin. The major findings of this study are that with this preparation of rat brain membranes: a) there are striking differences between the delta cx and mu binding sites; and b) both [D-Pen2,D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin exhibit high affinity for the delta cx binding site.  相似文献   

20.
Kim KW  Kim SJ  Shin BS  Choi HY 《Life sciences》2001,68(14):1649-1656
In this study, receptor binding profiles of opioid ligands for subtypes of opioid delta-receptors were examined employing [3H]D-Pen2,D-Pen5-enkephalin ([3H]DPDPE) and [3H]Ile(5,6)-deltorphin II ([3H]Ile-Delt II) in human cerebral cortex membranes. [3H]DPDPE, a representative ligand for delta1 sites, labeled a single population of binding sites with apparent affinity constant (Kd) of 2.72 +/- 0.21 nM and maximal binding capacity (Bmax) value of 20.78 +/- 3.13 fmol/mg protein. Homologous competition curve of [3H]Ile-Delt II, a representative ligand for delta2 sites, was best fit by the one-site model (Kd = 0.82 +/- 0.07 nM). Bmax value (43.65 +/- 2.41 fmol/mg) for [3H]Ile-Delt II was significantly greater than that for [3H]DPDPE. DPDPE, [D-Ala2,D-Leu5]enkephalin (DADLE) and 7-benzylidenaltrexone (BNTX) were more potent in competing for the binding sites of [3H]DPDPE than for those of [3H]Ile-Delt II. On the other hand, deltorphin II (Delt II), [D-Ser2,Leu5,Thr6]enkephalin (DSLET), naltriben (NTB) and naltrindole (NTI) were found to be equipotent in competing for [3H]DPDPE and [3H]Ile-Delt II binding sites. These results indicate that both subtypes of opioid delta-receptors, delta1 and delta2, exist in human cerebral cortex with different ligand binding profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号