首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we report the in-planta activity of the ribosome-inactivating protein JIP60, a 60-kDa jasmonate-induced protein from barley (Hordeum vulgare L.), in transgenic tobacco (Nicotiana tabacum L.) plants. All plants expressing the complete JIP60 cDNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited conspicuous and similar phenotypic alterations, such as slower growth, shorter internodes, lanceolate leaves, reduced root development, and premature senescence of leaves. Microscopic inspection of developing leaves showed a loss of residual meristems and higher degree of vacuolation of mesophyll cells as compared to the wild type. When probed with an antiserum which was immunoreactive against both the N- and the C-terminal half of JIP60, a polypeptide with a molecular mass of about 30 kDa, most probably a processed JIP60 product, could be detected. Phenotypic alterations could be correlated with the differences in the detectable amount of the JIP60 mRNA and processed JIP60 protein. The protein biosynthesis of the transformants was characterized by an increased polysome/monosome ratio but a decreased in-vivo translation activity. These findings suggest that JIP60 perturbs the translation machinery in planta. An immunohistological analysis using the JIP60 antiserum indicated that the immunoreactive polypeptide(s) are located mainly in the nucleus of transgenic tobacco leaf cells and to a minor extent in the cytoplasm. Received: 31 July 1996 / Accepted: 18 February 1997  相似文献   

2.
Recently it has been demonstrated that expression putative ribosome-inactivating protein JIP 60 in transgenic tobacco plants leads to the depurination of large rRNA and inactivation of plant ribosomes. Treatment of ribosomes from transgenic tobacco plants with low concentration of alpha-sarcin resulted in the appearance of an rRNA specific fragment. No fragment was observed under the same conditions for ribosomes from wild type plants. The alteration of the comformation of ribosomes in transgenic tobacco due to the expression of JIP60 is assumed.  相似文献   

3.
The N-terminal region of a 60 kDa, jasmonate-induced protein of barley leaves (JIP60) is shown to be homologous to the catalytic domains of plant ribosome-inactivating proteins (RIP). Western blotting of leaf extracts and in vitro reconstitution experiments indicate that JIP60 is synthesized as a precursor which is processed in vivo. This is in keeping with in vitro translation experiments indicating that a deletion derivative of the N-terminal region, but not the putative precursor, strongly inhibits protein synthesis on reticulocyte ribosomes. The inhibition of ribosome function is associated with depurination of 26S rRNA, characteristic of plant RIPs. This indicates that JIP60 is a novel ribosome-inactivating protein requiring at least two processing events for full activation. JIP60 derivatives do not significantly inhibit in vitro protein synthesis on wheat germ ribosomes. These and other results suggest that JIP60 may be involved in plant defence.  相似文献   

4.
Proteinaceous aspartic proteinase inhibitors are rare in nature and are described in only a few plant species. One of them corresponds to a family of cathepsin D inhibitors (CDIs) described in potato (Solanum tuberosum), involving up to 15 isoforms with a high sequence similarity. In this work, we describe a tomato (Solanum lycopersicum) wound-inducible protein called jasmonic-induced protein 21 (JIP21). Sequence analysis of its cDNA predicted a putative function as a CDI. The JIP21 gene, whose protein has been demonstrated to be glycosylated, is constitutively expressed in flowers, stem, and fruit, and is inducible to high levels by wounding and methyl jasmonate in leaves of tomato plants. The genomic sequence of JIP21 shows that the gene is intronless and reveals the presence of both a methyl jasmonate box (TGACT) and a G-box (CACGT) in the promoter. In contrast to the presumed role of JIP21 based on sequence analysis, a detailed biochemical characterization of the purified protein uncovers a different function as a strong chymotrypsin inhibitor, which questions the previously predicted inhibitory activity against aspartic proteinases. Moreover, Egyptian cotton worm (Spodoptera littoralis) larvae fed on transgenic tomato plants overexpressing JIP21 present an increase in mortality and a delay in growth when compared with larvae fed on wild-type plants. These larvae belong to the Lepidoptera family whose main digestive enzymes have been described as being Ser proteases. All these results support the notion that tomato JIP21 should be considered as a chymotrypsin inhibitor belonging to the Ser proteinase inhibitors rather than a CDI. Therefore, we propose to name this protein tomato chymotrypsin inhibitor 21 (TCI21).  相似文献   

5.
To isolate the genes involved in the response of graminaceous plants to Fe-deficient stress, a protein induced by Fe-deficiency treatment was isolated from barley (Hordeum vulgare L.) roots. Based on the partial amino acid sequence of this protein, a cDNA (HvAPT1) encoding adenine phosphoribosyltransferase (APRT: EC 2.4.2.7) was cloned from a cDNA library prepared from Fe-deficient barley roots. Southern analysis suggested that there were at least two genes encoding APRT in barley. Fe deficiency increased HvAPT1 expression in barley roots and resupplying Fe to the Fe-deficient plants rapidly negated the increase in HvAPT1 mRNA. Analysis of localization of HvAPT1-sGFP fusion proteins in tobacco BY-2 cells indicated that the protein from HvAPT1 was localized in the cytoplasm of cells. Consistent with the results of Northern analysis, the enzymatic activity of APRT in barley roots was remarkably increased by Fe deficiency. This induction of APRT activity by Fe deficiency was also observed in roots of other graminaceous plants such as rye, maize, and rice. In contrast, the induction was not observed to occur in the roots of a non-graminaceous plant, tobacco. Graminaceous plants generally synthesize the mugineic acid family phytosiderophores (MAs) in roots under Fe-deficient conditions. In this paper, a possible role of HvAPT1 in the biosynthesis of MAs related to adenine salvage in the methionine cycle is discussed.  相似文献   

6.
Barley lectin is synthesized as a preproprotein with a glycosylated carboxyl-terminal propeptide (CTPP) that is removed before or concomitant with deposition of the mature protein in vacuoles. Expression of a cDNA clone encoding barley lectin in transformed tobacco plants results in the correct processing, maturation, and accumulation of active barley lectin in vacuoles [Wilkins, T.A., Bednarek, S.Y., and Raikhel, N.V. (1990). Plant Cell 2, 301-313]. The glycan of the propeptide is not essential for vacuolar sorting, but may influence the rate of post-translational processing [Wilkins, T.A., Bednarek, S.Y., and Raikhel, N.V. (1990). Plant Cell 2, 301-313]. To investigate the functional role of the CTPP in processing, assembly, and sorting of barley lectin to vacuoles, a mutant barley lectin cDNA clone lacking the 15-amino acid CTPP was prepared. The CTPP deletion mutant of barley lectin was expressed in tobacco protoplasts, suspension-cultured cells, and transgenic plants. In all three systems, the wild-type barley lectin was sorted to vacuoles, whereas the mutant barley lectin was secreted to the incubation media. Therefore, we conclude that the carboxyl-terminal domain of the barley lectin proprotein is necessary for the efficient sorting of this protein to plant cell vacuoles.  相似文献   

7.
cDNAs encoding three proteins from barley ( Hordeum vulgare ), a class-II chitinase (CHI), a class-II β-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes was detected in the transgenic plants by Northern and Western blot analysis. The leader peptides in CHI and GLU led to accumulation of these proteins in the intercellular space of tobacco leaves. RIP, which is naturally deposited in the cytosol of barley endosperm cells, was expressed either in its original cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani , which infects a range of plant species including tobacco. To create a situation similar to 'multi-gene' tolerance, which traditional breeding experience has shown to provide crops with a longer-lasting protection, several of these antifungal genes were combined and protection against fungal attack resulting from their co-expression in planta was evaluated. Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/ CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack when compared with the protection levels obtained with corresponding isogenic lines expressing a single barley transgene to a similar level. The data indicate synergistic protective interaction of the co-expressed anti-fungal proteins in vivo .  相似文献   

8.
The systemic acquired resistance (SAR) was studied in barley to find out specific molecular markers for this type of resistance. Such markers may serve as diagnostic tools to indicate the defense-status of a plant and, additionally, may be used to identify new resistance-inducing compounds in broad screening experiments. Upon treatment of barley leaves with the resistance-inducing compound 2,6-dichloroisomicotinic acid (INA) we found, in addition to a yet unidentified basic protein of 45 kDa (designated BIR-1) induction of a specific 6kDa polypeptide. Using Northern-and Western blot analysis this small polypeptide was identified as JIP-6, a known member of the jasmonate-induced protein (JIP)-family of barley that was previously demonstrated to be a leaf thionin (ANDRESEN et al. 1992).  相似文献   

9.
The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.  相似文献   

10.
Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover.  相似文献   

11.
The maize b-32 protein is a functional ribosome-inactivating protein (RIP), inhibiting in vitro translation in the cell-free reticulocyte-derived system and having specific N-glycosidase activity on 28S rRNA. Previous results indicated that opaque-2 (o2) mutant kernels, lacking b-32, show an increased susceptibility to fungal attack and insect feeding and that ectopic expression in plants of a barley and a pokeweed RIP leads to increased tolerance to fungal and viral infection. This prompted us to test whether b-32 might functi on as a protectant against pathogens. The b32.66 cDNA clone under the control of the potato wun1 gene promoter was introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Out of 23 kanamycin resistant regenerated shoots, 16 contained a PCR fragment of the corrrect size spanning the boundary between the promoter used and the coding region of the b-32 gene. Eight independently transformed tobacco lines were randomly chosen for protein analysis: all of them expressed b-32 protein. The data presented indicate that transgenic tobacco plants expressing b-32 show an increased tolerance against infection by the soil-borne fungal pathogen Rhizoctonia solani Kuhn  相似文献   

12.
13.
Summary A protoplast fusion experiment was designed in which the selectable marker, nitrate reductase (NR), also served as a biochemical marker to provide direct evidence for intergeneric specific gene transfer. NR-deficient tobacco (Nicotiana tabacum) mutant Nia30 protoplasts were the recipients for the attempted transfer of the NR structural gene from 50 krad -irradiated barley (Hordeum vulgare L.) protoplasts. Barley protoplasts did not form colonies and Nia30 protoplasts could not grow on nitrate medium; therefore, selection was for correction of NR deficiency allowing tobacco colonies to grow on nitrate medium. Colonies were selected from protoplast fusion treatments at an approximate frequency of 10-5. This frequency was similar to the Nia30 reversion frequency, and thus provided little evidence for transfer of the barley NR gene to tobacco. Plants regenerated from colonies had NR activity and were analyzed by western blotting using barley NR antiserum to determine the characteristics of the NR conferring growth on nitrate. Ten plants exhibited tobacco NR indicating reversion of a Nia30 mutant NR locus. Twelve of 26 regenerated tobacco plants analyzed had NR subunits with the electrophoretic mobility and antigenic properties of barley NR. These included plants regenerated from colonies selected from 1) co-culturing a mixture of Nia30 protoplasts with irradiated barley protoplasts without a fusion treatment, 2) a protoplast fusion treatment of Nia30 and barley protoplasts, and 3) a fusion treatment of Nia30 protoplasts with irradiated barley protoplasts. No barley-like NR was detected in plants regenerated from a colony that grew on nitrate following selfed fusion of Nia30 protoplasts. Because tobacco plants expressing barley-like NR were recovered from mixture controls as well as fusion treatments, explanations for these results other than protoplast fusionmediated gene transfer are discussed.  相似文献   

14.
Ischemia-reperfusion (IR)-induced cell apoptosis involves the activation of c-Jun NH2-terminal kinase (JNK). The activation of JNK requires the presence of scaffold proteins called JNK-interacting proteins (JIP), which bind several members of a signaling cascade for proper signaling specificity. In this study, the expression of scaffold proteins JIP1 and JIP3 and their roles in the regulation of JNK activity were investigated in simulated IR in a cell model (H9c2). JIP1 protein expression was significantly decreased, whereas JIP3 protein expression was increased in IR H9c2 cells. Adenovirus-induced overexpression of JIP1 reduced IR-induced JNK activity and apoptosis. Conversely, overexpression of JIP3 increased JNK activity and apoptosis following IR. Depletion of endogenous JIP1 by siRNA treatment increased the IR-induced JNK activity, whereas siRNA-mediated depletion of endogenous JIP3 inhibited JNK activity. These results suggest that JIP1 and JIP3 play important roles in the activation of JNK during simulated IR challenge in H9c2 cells.  相似文献   

15.
Lipopolysaccharide (LPS) is recognized by Toll-like receptor (TLR) 4 and activates NF-kappaB and a set of MAP kinases. Here we have investigated proteins associated with the cytoplasmic domain of mouse TLR4 by yeast two-hybrid screening and identified JNK-interacting protein 3 (JIP3), a scaffold protein for JNK, as a TLR4-associated protein. In mammalian cells, JIP3, through its N-terminal region, constitutively associates with TLR4. The association is specific to JIP3, as the two other JIPs, JIP1 and JIP2, failed to bind TLR4. In HEK 293 cells exogenously expressing TLR4, MD2 and CD14, co-expression of JIP3 significantly increased the complex formation of TLR4-JNK and LPS-mediated JNK activation. In contrast, expression of C-terminally truncated forms of JIP3 impaired LPS-induced JNK activation in a mouse macrophage cell line, RAW264.7. Moreover, RNA interference of JIP3 inhibited LPS-mediated JNK activation. In RAW264.7 cells, JIP3 associates MEKK-1, but not with TAK-1. Finally, JIP3 also associates with TLR2 and TLR9, but not with TLR1 or TLR6. Altogether, our data indicate the involvement of JIP3 in JNK activation in downstream signals of some TLRs.  相似文献   

16.
Members of the JNK pathway are organized together by virtue of interactions with JNK interacting protein 1 (JIP1), a scaffold protein. Here we have investigated the possibility that JIP1 may also affect the catalytic activity of Akt1, a serine/threonine kinase that has been implicated in multiple cellular processes, including survival and proliferation. JIP1 expression enhanced Akt1 kinase activity in a dose-dependent manner following serum starvation in 293 cells. Cellular activation of Akt1 following stimulation with low concentrations of insulin-like growth factor (IGF-1) was elevated in the presence of JIP1. JIP1 expression also prolonged Akt1 stimulation after a short IGF-1 pulse. The mechanism of JIP1-mediated Akt1 activation involved JIP1 protein binding to the Akt1 pleckstrin homology domain, which in turn promoted the phosphorylation of the activation T-loop of Akt1 by phosphoinositide-dependent kinase-1. These results suggest that, in certain cellular contexts, JIP1 may act as an Akt1 scaffold, which regulates the enzymatic activity of Akt1. This study also indicates that JIP1 expression can exert signaling effects independent of JNK activity.  相似文献   

17.
Purified lipid transfer protein LTP2 from barley applied on tobacco leaves eliminated symptoms caused by infiltration of Pseudomonas syringae pv. tabaci 153. Growth of the pathogen in leaves of transgenic tobacco plants was retarded when compared with non-transformed controls. The percentage of inoculation points that showed necrotic lesions was greatly reduced in transgenic tobacco 17–38% versus 78%) and the average size of these lesions was 61–81% that of control. The average total lesion area (necrosis and chlorosis) in the transgenic plants was also reduced (38% of control). Arabidopsis thaliana transgenic plants inoculated with P. syringae pv. tomato DC3000 also had lower percentages of necrotic lesions (22–38% versus 76%), a reduced average area for each lesion (53–67% of control), and a smaller total lesion area per inoculation (43% of control). These results further support the assignment of a defense role for LTPs and highlight their biotechnological potential.  相似文献   

18.
We have isolated a novel protein based on its association with Drosophila APP-like protein (APPL), a homolog of the beta-amyloid precursor protein (APP) that is implicated in Alzheimer's disease. This novel APPL-interacting protein 1 (APLIP1) contains a Src homology 3 domain and a phosphotyrosine interaction domain and is expressed abundantly in neural tissues. The phosphotyrosine interaction domain of APLIP1 interacts with a sequence containing GYENPTY in the cytoplasmic domain of APPL. APLIP1 is highly homologous to the carboxyl-terminal halves of mammalian c-Jun NH(2)-terminal kinase (JNK)-interacting protein 1b (JIP1b) and 2 (JIP2), which also contain Src homology 3 and phosphotyrosine interaction domains. The similarity of APLIP1 to JIP1b and JIP2 includes interaction with component(s) of the JNK signaling pathway and with the motor protein kinesin and the formation of homo-oligomers. JIP1b interacts strongly with the cytoplasmic domain of APP (APPcyt), as APLIP1 does with APPL, but the interaction of JIP2 with APPcyt is weak. Overexpression of JIP1b slightly enhances the JNK-dependent threonine phosphorylation of APP in cultured cells, but that of JIP2 suppresses it. These observations suggest that the interactions of APP family proteins with APLIP1, JIP1b, and JIP2 are conserved and play important roles in the metabolism and/or the function of APPs including the regulation of APP phosphorylation by JNK. Analysis of APP family proteins and their associated proteins is expected to contribute to understanding the molecular process of neural degeneration in Alzheimer's disease.  相似文献   

19.
Callus induction from tobacco pith, pea epicotyl and germinatingrice and barley seeds was investigated using a variety of auxinsand their analogues. Among the indole compounds tested, IAAand IBA were the most effective for tobacco, IPA and IVA forpea, and IBA for barley. IAA and IVA were effective for rice.2,4-D was the most effective after 2,4-D analogues for callusinduction in the plants tested. (Received February 28, 1977; )  相似文献   

20.
Activation of the c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is mediated by a protein kinase cascade. This signaling mechanism may be coordinated by the interaction of components of the protein kinase cascade with scaffold proteins. The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates signaling by the mixed-lineage kinase (MLK)-->MAP kinase kinase 7 (MKK7)-->JNK pathway. The scaffold proteins JIP1 and JIP2 interact to form oligomeric complexes that accumulate in peripheral cytoplasmic projections extended at the cell surface. The JIP proteins function by aggregating components of a MAP kinase module (including MLK, MKK7, and JNK) and facilitate signal transmission by the protein kinase cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号