首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Actinomycetes from the genus Frankia induce nitrogen-fixing root nodules on actinorhizal plants in the "core rosid" clade of eudicots. Reported here are nine partial Frankia 16S rRNA gene sequences including the first from host plants of the rosaceous genera Cercocarpus and Chamaebatia, 24 partial glutamine synthetase (GSI; glnA) sequences from Frankia in nodules of 17 of the 23 actinorhizal genera, and the partial glnA sequence of Acidothermus cellulolyticus. Phylogenetic analyses of combined Frankia 16S rDNA and glnA sequences indicate that infective strains belong to three major clades (I-III) and that Clade I strains consisting of unisolated symbionts from the Coriariaceae, Datiscaceae, Rosaceae, and Ceanothus of the Rhamnaceae are basal to the other clades. Clock-like mutation rates in glnA sequence alignments indicate that all three major Frankia clades diverged early during the emergence of eudicots in the Cretaceous period, and suggest that present-day symbioses are the result of an ancestral symbiosis that emerged before the divergence of extant actinorhizal plants.  相似文献   

2.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

3.
In actinorhizal symbioses, filamentous nitrogen-fixing soil bacteria of the genus Frankia induce the formation of nodules on the roots of a diverse group of dicotyledonous plants representing trees or woody shrubs, with one exception, Datisca glomerata. In the nodules, Frankia fixes nitrogen and exports the products to the plant cytoplasm, while being supplied with carbon sources by the host. Possibly due to the diversity of the host plants, actinorhizal nodules show considerable variability with regard to structure, oxygen protection mechanisms and physiology. Actinorhizal and legume-rhizobia symbioses are evolutionary related and share several features.  相似文献   

4.
According to morphologically based classification systems, actinorhizal plants, engaged in nitrogen-fixing symbioses with Frankia bacteria, are considered to be only distantly related. However, recent phylogenetic analyses of seed plants based on chloroplast rbcL gene sequences have suggested closer relationships among actinorhizal plants. A more thorough sampling of chloroplast rbcL gene sequences from actinorhizal plants and their nonsymbiotic close relatives was conducted in an effort to better understand the phylogenetic relationships of these plants, and ultimately, to assess the homology of the different actinorhizal symbioses. Sequence data from 70 taxa were analyzed using parsimony analysis. Strict consensus trees based on 24 equally parsimonious trees revealed evolutionary divergence between groups of actinorhizal species suggesting that not all symbioses are homologous. The arrangement of actinorhizal species, interspersed with nonactinorhizal taxa, is suggestive of multiple origins of the actinorhizal symbiosis. Morphological and anatomical characteristics of nodules from different actinorhizal hosts were mapped onto the rbclL-based consensus tree to further assess homology among rbcL-based actinorhizal groups. The morphological and anatomical features provide additional support for the rbcL-based groupings, and thus, together, suggest that actinorhizal symbioses have originated more than once in evolutionary history.  相似文献   

5.
Actinorhizal plants invade nitrogen-poor soils because of their ability to form root nodule symbioses with N(2)-fixing actinomycetes known as Frankia. Frankia strains are difficult to isolate, so the diversity of strains inhabiting nodules in nature is not known. To address this problem, we have used the variability in bacterial 16S rRNA gene sequences amplified from root nodules as a means to estimate molecular diversity. Nodules were collected from 96 sites primarily in northeastern North America; each site contained one of three species of the family Myricaceae. Plants in this family are considered to be promiscuous hosts because several species are effectively nodulated by most isolated strains of Frankia in the greenhouse. We found that strain evenness varies greatly between the plant species so that estimating total strain richness of Frankia within myricaceous nodules with the sample size used was problematical. Nevertheless, Myrica pensylvanica, the common bayberry, was found to have sufficient diversity to serve as a reservoir host for Frankia strains that infect plants from other actinorhizal families. Myrica gale, sweet gale, yielded a few dominant sequences, indicating either symbiont specialization or niche selection of particular ecotypes. Strains in Comptonia peregrina nodules had an intermediate level of diversity and were all from a single major group of Frankia.  相似文献   

6.
A review of recent molecular systematic studies of actinorhizal plants and their Frankia endosymbionts is presented. For comparative purposes, a discussion of recent studies pertaining to the evolution of nodulation in the legume-rhizobium system is included. Molecular systematic studies have revealed that actinorhizal plants are more closely related than current taxonomic schemes imply. Broad-based analyses of the chloroplast gene rbcL indicate that all symbiotic root-nodulating higher plants belong to a single large clade. More focused molecular analyses of both legume and actinorhizal hosts within this large clade indicate that symbioses have probably arisen more than once. By comparing host phylogenies and recently published bacterial phylogenies, we consider the coevolution of bacterial symbionts with their actinorhizal hosts.  相似文献   

7.
8.
Phylogenetic analyses suggest that, among the members of the Eurosid I clade, nitrogen-fixing root nodule symbioses developed multiple times independently, four times with rhizobia and four times with the genus Frankia. In order to understand the degree of similarity between symbiotic systems of different phylogenetic subgroups, gene expression patterns were analyzed in root nodules of Datisca glomerata and compared with those in nodules of another actinorhizal plant, Alnus glutinosa, and with the expression patterns of homologous genes in legumes. In parallel, the phylogeny of actinorhizal plants was examined more closely. The results suggest that, although relationships between major groups are difficult to resolve using molecular phylogenetic analysis, the comparison of gene expression patterns can be used to inform evolutionary relationships. In this case, stronger similarities were found between legumes and intracellularly infected actinorhizal plants (Alnus) than between actinorhizal plants of two different phylogenetic subgroups (Alnus/Datisca).  相似文献   

9.
Several of the most studied actinorhizal symbioses involve associations between host plants in the subclass Hamamelidae of the dicots and actinomycetes of the genus Frankia. These actinorhizal plants comprise eight genera distributed among three families of ‘higher’ Hamamelidae, the Betulaceae, Myricaceae, and Casuarinaceae. Contrasting promiscuity towards Frankia is encountered among the different actinorhizal members of these families, and a better assessment of the evolutionary history of these actinorhizal taxa could help to understand the observed contrasts and their implications for the ecology and evolution of the actinorhizal symbiosis. Complete DNA sequences of the chloroplast gene coding for the large subunit of ribulose 1,5-bisphosphate carboxylase (rbcL) were obtained from taxa representative of these families and the Fagaceae. The phylogenetic relationships among and within these families were estimated using parsimony and distance-matrix approaches. All families appeared monophyletic. The Myricaceae appeared to derive first before the Betulaceae and the Casuarinaceae. In the Casuarinaceae, the genus Gymnostoma derived before the genera Casuarina and Allocasuarina, which were found closely related. The analysis of character-state changes in promiscuity along the consensus tree topology suggested a strong relationship between the evolutionary history of host plants and their promiscuity toward Frankia. Indeed, the actinorhizal taxa that diverged more recently in this group of plants were shown to be susceptible to a narrower spectrum of Frankia strains. The results also suggest that the ancestor of this group of plant was highly promiscuous, and that evolution has proceeded toward narrower promiscuity and greater specialization. These results imply that a tight relationship between the phytogenies of both symbiotic partners should not be expected, and that host promiscuity is likely to be a key determinant in the establishment of an effective symbiosis.  相似文献   

10.
In an attempt to define the phylogenetical relationship among 17 phenotypically related species of genera Enterobacter, Pantoea, Serratia, Klebsiella and Erwinia, we determined almost all of their groE operon sequences using the polymerase chain reaction direct sequencing method. The number of nucleotide substitutions per site was 0.12+/-0.030. The value was 3.6-fold higher than that of 16S rDNA. As a result, we were successful in constructing molecular phylogenetic trees which had a finer resolution than that based on the 16S rDNA sequences. The phylogenetic trees based on the nucleotide sequences and deduced amino acid sequences of groE operons indicated that the members of genera Enterobacter, Pantoea and Klebsiella were closely related to each other, while Serratia and Erwinia species except Erwinia carotovora, made distinct clades. The close relationship between Enterobacter aerogenes and Klebsiella pneumoniae, that had been suggested by biochemical tests and DNA hybridization, was also supported by our molecular phylogenetic trees.  相似文献   

11.
The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.  相似文献   

12.
In search of plant genes expressed during early interactions between Casuarina glauca and Frankia, we have isolated and characterized a C. glauca gene that has strong homology to subtilisin-like protease gene families of several plants including the actinorhizal nodulin gene ag12 of another actinorhizal plant, Alnus glutinosa. Based on the expression pattern of cg12 in the course of nodule development, it represents an early actinorhizal nodulin gene. Our results suggest that subtilisin-like proteases may be a common element in the process of infection of plant cells by Frankia in both Betulaceae (Alnus glutinosa) and Casuarinaceae (Casuarina glauca) symbioses.  相似文献   

13.
Filamentous aerobic soil actinobacteria of the genus Frankia can induce the formation of nitrogen-fixing nodules on the roots of a diverse group of plants from eight dicotyledonous families, collectively called actinorhizal plants. Within nodules, Frankia can fix nitrogen while being hosted inside plant cells. Like in legume/rhizobia symbioses, bacteria can enter the plant root either intracellularly through an infection thread formed in a curled root hair, or intercellularly without root hair involvement, and the entry mechanism is determined by the host plant species. Nodule primordium formation is induced in the root pericycle as for lateral root primordia. Mature actinorhizal nodules are coralloid structures consisting of multiple lobes, each of which represents a modified lateral root without a root cap, a superficial periderm and with infected cells in the expanded cortex. In this review, an overview of nodule induction mechanisms and nodule structure is presented including comparisons with the corresponding mechanisms in legume symbioses.  相似文献   

14.
蝗科高级阶元的分子系统发育(英文)   总被引:2,自引:0,他引:2  
迄今,蝗科内各分类阶元之间的系统发生关系大部分是未知的。本文用来自中国24种蝗科昆虫的12SrDNA和16SrDNA2个基因的联合序列(共795bp)数据,以锥头蝗科的锥头蝗(Pyrgomorpha conica)为外群,重建了分子系统树。研究结果表明,在12SrDNA与16SrDNA组成的联合数据中,转换的替代速率明显比颠换的替代速率高得多,核酸的替代已经发生了饱和。分子系统树表明:斑翅蝗亚科是一单系群,该亚科是一个合法的亚科,但斑腿蝗亚科和蝗亚科都不是单系群;斑翅蝗亚科在蝗科内是一个相对原始的类群,而稻蝗亚科比斑翅蝗亚科相对进化,比蝗科的其他亚科的种类相对原始。  相似文献   

15.
Following (1) the large-scale molecular phylogeny of seed plants based on plastid rbcL gene sequences (published in 1993 by Chase et al., Ann. Missouri Bot. Gard. 80:528-580) and (2) the 18S nuclear phylogeny of flowering plants (published in 1997 by Soltis et al., Ann. Missouri Bot. Gard. 84:1-49), we present a phylogenetic analysis of flowering plants based on a second plastid gene, atpB, analyzed separately and in combination with rbcL sequences for 357 taxa. Despite some discrepancies, the atpB-based phylogenetic trees were highly congruent with those derived from the analysis of rbcL and 18S rDNA, and the combination of atpB and rbcL DNA sequences (comprising approximately 3000 base pairs) produced increased bootstrap support for many major sets of taxa. The angiosperms are divided into two major groups: noneudicots with inaperturate or uniaperturate pollen (monocots plus Laurales, Magnoliales, Piperales, Ceratophyllales, and Amborellaceae-Nymphaeaceae-Illiciaceae) and the eudicots with triaperturate pollen (particularly asterids and rosids). Based on rbcL alone and atpB/rbcL combined, the noneudicots (excluding Ceratophyllum) are monophyletic, whereas in the atpB trees they form a grade. Ceratophyllum is sister to the rest of angiosperms with rbcL alone and in the combined atpB/rbcL analysis, whereas with atpB alone, Amborellaceae, Nymphaeaceae, and Illiciaceae/Schisandraceae form a grade at the base of the angiosperms. The phylogenetic information at each codon position and the different types of substitutions (observed transitions and transversions in the trees vs. pairwise comparisons) were examined; taking into account their respective consistency and retention indices, we demonstrate that third-codon positions and transitions are the most useful characters in these phylogenetic reconstructions. This study further demonstrates that phylogenetic analysis of large matrices is feasible.  相似文献   

16.
Based on partial 16S sequences, we previously described a novel group of nonsymbiotic, acetylene reduction activity-positive actinomycetes which were isolated from surface-sterilized roots of Casuarina equisetifolia growing in Mexico. An amplified rRNA restriction analysis confirmed that these actinomycetes are distinct from Frankia, a finding substantiated by a 16S rRNA gene phylogenetic analysis of two of the Mexican isolates. Further support for these actinomycetes being separate from Frankia comes from the very low DNA-DNA homology that was found. Nevertheless, the Mexican isolates may be diazotrophs based not only on their ability to grow in N-free medium and reduce acetylene to ethylene but also on the results from (15)N isotope dilution analysis and the finding that a nifH gene was PCR amplified. A comparison of the nifH sequences from the various isolates showed that they are closely related to nifH from Frankia; the similarity was 84 to 98% depending on the host specificity group. An analysis of complete 16S rRNA gene sequences demonstrated that the two strains analyzed in detail are most closely related to actinobacteria in the Thermomonosporaceae and the Micromonosporaceae.  相似文献   

17.
Abstract The term ``actinorhiza' refers both to the filamentous bacteria Frankia, an actinomycete, and to the root location of nitrogen-fixing nodules. Actinorhizal plants are classified into four subclasses, eight families, and 25 genera comprising more than 220 species. Although ontogenically related to lateral roots, actinorhizal nodules are characterized by differentially expressed genes, supporting the idea of the uniqueness of this new organ. Two pathways for root infection have been described for compatible Frankia interactions: root hair infection or intercellular penetration. Molecular phylogeny groupings of host plants correlate with morphologic and anatomic features of actinorhizal nodules. Four clades of actinorhizal plants have been defined, whereas Frankia bacteria are classified into three major phylogenetic groups. Although the phylogenies of the symbionts are not fully congruent, a close relationship exists between plant and bacterial groups. A model for actinorhizal specificity is proposed that includes different levels or degrees of specificity of host-symbiont interactions, from fully compatible to incompatible. Intermediate, compatible, but delayed or limited interactions are also discussed. Actinorhizal plants undergo feedback regulation of symbiosis involving at least two different and consecutive signals that lead to a mechanism controlling root nodulation. These signals mediate the opening or closing of the window of susceptibility for infection and inhibit infection and nodule development in the growing root, independently of infection mechanism. The requirement for at least two molecular recognition steps in the development of actinorhizal symbioses is discussed.  相似文献   

18.
Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia   总被引:4,自引:0,他引:4  
The occurrence and diversity of Frankia nodulating Elaeagnus angustifolia in Tunisia were evaluated in 30 soils from different regions by a Frankia-capturing assay. Despite the absence of actinorhizal plants in 24 of the 30 soils, nodules were captured from all the samples. Eight pure strains were isolated from single colonies grown in agar medium. On the basis of 16S rRNA and GlnII sequences, seven strains were clustered with Frankia, colonizing Elaeagnaceae and Rhamnaceae in two different phylogenetic groups while one strain described a new lineage in the Frankia assemblage, indicating that Frankia strains genetically diverse from previously known Elaeagnus-infective strains are present in tunisian soils. Genomic fingerprinting determined by rep-PCR, and tDNA-PCR-SSCP, confirmed the wide genetic diversity of the strains.  相似文献   

19.
Biology of Frankia strains, actinomycete symbionts of actinorhizal plants.   总被引:10,自引:0,他引:10  
Frankia strains are N2-fixing actinomycetes whose isolation and cultivation were first reported in 1978. They induce N2-fixing root nodules on diverse nonleguminous (actinorhizal) plants that are important in ecological successions and in land reclamation and remediation. The genus Frankia encompasses a diverse group of soil actinomycetes that have in common the formation of multilocular sporangia, filamentous growth, and nitrogenase-containing vesicles enveloped in multilaminated lipid envelopes. The relatively constant morphology of vesicles in culture is modified by plant interactions in symbiosis to give a diverse array of vesicles shapes. Recent studies of the genetics and molecular genetics of these organisms have begun to provide new insights into higher-plant-bacterium interactions that lead to productive N2-fixing symbioses. Sufficient information about the relationship of Frankia strains to other bacteria, and to each other, is now available to warrant the creation of some species based on phenotypic and genetic criteria.  相似文献   

20.
The phylogenetic relationships of multiple enterobacterial species were reconstructed based on 16S rDNA gene sequences to evaluate the robustness of this housekeeping gene in the taxonomic placement of the enteric plant pathogens Erwinia, Brenneria, Pectobacterium, and Pantoea. Four data sets were compiled, two of which consisted of previously published data. The data sets were designed in order to evaluate how 16S rDNA gene phylogenies are affected by the use of different plant pathogen accessions and varying numbers of animal pathogen and outgroup sequences. DNA data matrices were analyzed using maximum likelihood (ML) algorithms, and character support was determined by ML bootstrap and Bayesian analyses. As additional animal pathogen sequences were added to the phylogenetic analyses, taxon placement changed. Further, the phylogenies varied in their placement of the plant pathogen species, and only the genus Pantoea was monophyletic in all four trees. Finally, bootstrap and Bayesian support values were low for most of the nodes, and all nonterminal branches collapsed in strict consensus trees. Inspection of 16S rDNA nucleotide alignments revealed several highly variable blocks punctuated by regions of conserved sequence. These data suggest that 16S rDNA, while effective for both species-level and family-level phylogenetic reconstruction, may underperform for genus-level phylogenetic analyses in the Enterobacteriaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号