首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The development of the chondrocranium of Cavia porcellus is compared to those of other rodents. The tectum posterius of the investigated rodents is orientated vertically. This position is functionally caused by the attachment of the muscles of the neck and shoulder girdle. The paracondylar process is a typical feature of rodents although absent in Mesocricetus. Only in Cavia and Tatera, the connection between the lamina supraoccipitalis and the auditory capsule-the supraoccipitocapsular commissure-is missing. Youssef's (1966) generalization that the course of the notochord in rodents is of transbasal type cannot be confirmed. In Cavia, the auditory capsule is connected with the occipital region only by the exoccipitocapsular commissure. The connection between auditory capsule and basal plate is established by the alicochlear and the anterior basicapsular commissures. In comparison to other rodents, the number of commissures in Cavia is reduced. In rodents, there is always a subarcuate fossa which in later stages of development is filled out by the flocculus cerebelli. In contrary to Rajtova's (1972a) statement, Cavia shows a suprafacial commissure as all mammals do (Reinbach 1952). As the tegmen tympani is absent in Otomys and Erethizon, it is not a typical rodent feature. The carotid foramen is well developed in Cavia but the internal carotid artery obliterates until the 25 mm CRL-stage. In embryonic rodents, the ala temporalis may have a foramen ovale but not a foramen rotundum. During ontogeny rodents show the ala hypochiasmatica for the attachment of the straight muscles of the eyeball. In Cavia the ala hypochiasmatica develops independently and fuses with the postoptic root of the ala orbitalis in later stages. In myomorphs and sciumorphs, the orbitoparietal and orbitonasal commissures are present. Only in caviomorphs this part of the primary sidewall of the skull is uncomplete. Erethizon, however, shows an orbitonasal commissure whereas in Cavia both commissures are missing. In this respect the guinea-pig resembles the condition of primates. There is no interorbital septum in rodents. The nasal capsule of rodents contains 1 atrioturbinal, 1 maxilloturbinal, 1 nasoturbinal, and at least 3 ethmoturbinals. Due to the strong development of the alveoli of the incisors, the maxilloturbinale is flected in the caviomorphs. The epiphanial foramina are present. The lamina transversalis anterior is continuous with the nasal septum so that there is a complete zona anularis in rodents. The paraseptal cartilages are continuous with the lamina transversalis anterior but not with the lamina transversalis posterior.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The trabeculae cranii are at first quite separate from each other, after few days their anterior two fifths are connected by a trabecular plate which is obliterated throughout development. The paired origin of the parachordal plate is not observed. The fused posterior orbital cartilages chondrify in the form of a wide short plate, traversed by the oculomotor and trochlear nerves. The basicranial fenestra and fenestra ovalis are formed by the degeneration of pre-existing cartilage. The cochlear portion is completely fused with the parachordal plate from the very beginning. The elements of the pterygoquadrate are fused together. The quadrate and Meckel's cartilage are in close contact from the very beginning. While the lower part of the interorbital septum is derived from the trabecula communis, its upper part is derived from the anterior orbital cartilages. The lateral parts of the fused posterior orbital cartilages give rise to most of the taeniae and pilae of the orbitotemporal region. There is only one commissure between the auditory capsule and parachordal plate. A cartilaginous connection between the distal portion of the columella auris and ceratohyal persists for some time. The parietotectal and paranasal cartilages are fused together from the very beginning. The processus paroticus originates from the columella auris. In the fully formed stage the notochord is completely embedded in the occipital condyle. The union between the condyle and odontoid process persists. The auditory capsules and occipital arches contribute to the formation of the tectum synoticum plus posterius. The prefacial commissure and facial foramen lie in front of the cochlear portion. The columella auris possesses a processus internus (connected with the quadrate), but the processes a dorsalis has completely disappeared. The orbitotemporal region is quite complete. A medial fenestra is formed in the planum supraseptale. A fenestra is observed in each of the interorbital and nasal septa. The lamina transversalis anterior is fused with the parietotectal cartilage. A complete zona annularis is present. The outer wall of the paranasal cartilage is perforated by a large fenestra lateralis. The parietotectal and paranasal cartilages and the posterior process of the lamina transversalis anterior contribute to the formation of the concha nasalis. There is a contact between the planum antorbitale and nasal septum. The pterygoid process has disappeared. The common characters of the lacertid chondrocranuium are deduced.  相似文献   

3.
The skull of the platyrrhine primate Saimiri sciureus is distinguished by a large interorbital fenestra. Juvenile skulls still show a bony interorbital septum with some small gaps. A morphogenetic study was undertaken to better understand the structures of the interorbital region, which represents a linkage between the base of the braincase and the nasal skeleton. Already in early ontogenetic stages a reduction of the posterior portion of the nasal capsule and of the cartilaginous interorbital septum are observed, resulting in the formation of a primary interorbital fenestra. A bony interorbital septum is mainly formed in perinatal age stages by ossification of the presphenoid and by medial fusion of the frontals; the primary interorbital fenestra is retained as a small opening. It only occurs in late juvenile stages when the definitive interorbital fenestra develops by by secondary transformation of bone into a membrane of dense connective tissue; this process is most probably caused by mechanical friction of the very closely approximated eyes of both sides.  相似文献   

4.
5.
The ontogeny of the posterior otic and anterior occipital portions of the neural endocranium of prehatching Alligator mississippiensis was investigated by reconstruction from sectioned material. In Stage 6 of this species, in which the endochondral ossification of the otoccipital region of the neural endocranium is only in its very early stage, two bony outgrowths-laminae-are present at the external wall of the posterior portion of the neural endocranium. The anterior lamina arises from the external surface of the basal plate at the level of the posterior margin of the subcapsular process; the posterior lamina arises from the external surface of that portion of the pila occipitalis that forms the posteroventral wall of the metotic fissure. During ontogeny, both laminae lying in the anteroposterior sequence ossify in membrane, fuse together, grow laterodorsally, and fuse with the lateral wall of the lateral semicircular canal and the crista parotica. This lamina forms a new, secondary wall enclosing the posterior section of the otic capsule and contains the large external jugular foramen (or foramen vagi) in its basal portion. The laminae, designated lamina juxtaotica anterior and posterior (lamina juxtaotica when fused together), have not been recorded previously in crocodylians and are absent in all other Recent reptiles. From the functional point of view, the juxtaotic lamina 1) forms the margins of the external jugular foramen, and 2) forms the floor of the posterior section of the Eustachian tube. In birds, the structure called the metotic cartilage, which arises in ontogeny as an independent element, has a similar position as the juxtaotic lamina. However, the two structures differ in their developmental origins and their relation to the Eustachian tube and the ramus hyomandibularis of the facialis nerve. Moreover, there is no external jugular foramen in birds.  相似文献   

6.
The structure of the tympanic region of the skull of Ptilocercus lowii was studied in an embryo of 30 mm crown-rump length and in 5 osteocrania. As in Tupaia, the anterior wall of the bulla of Ptilocercus is not completed by a tympanic process of the alisphenoid, contrary to earlier reports. Ptilocercus resembles Tupaia in the following derived characters. The ventral wall of the tympanic cavity is formed by a rostral entotympanic and by a caudal tympanic process of the petrosal. The entotympanic develops in primary connection with the tubal cartilage. The tympanic aperture of the auditory tube is bordered by the entotympanic. The ring-shaped tympanicum is covered by the entotympanicum and is aphaneric. The musculus tensor tympani is lacking. Among mammals, these characters can be regarded as synapomorphic for the Tupaiidae, that is, to have been present in the common ancestor of the two subfamilies. From the evidence of the tympanic region, the Tupaiidae, therefore, form a monophyletic group. Besides these synapomorphies, there are remarkable differences between Ptilocercus and Tupaia in the structure of the bulla. In Ptilocercus the bulla is smaller and less pneumatized than in Tupaia. An anterior intrabullar septum, present in Tupaia, is lacking in Ptilocercus. The epitympanic wing of the alisphenoid is smaller in Ptilocercus than in Tupaia. A lateral prefacial commissure of the tegmen tympani is present in Ptilocercus, but absent in Tupaia. The caudal tympanic process of the petrosal is larger in Ptilocercus than in Tupaia. These characters are autapomorphic for the Ptilocercinae and for the Tupaiinae, respectively. They demonstrate that the auditory bulla of Ptilocercus and that of Tupaia have evolved independently to a considerable extent. An early phylogenetic separation of their respective ancestors seems likely. The tympanic region of the skull provides no evidence for close relationships of the tree shrews to the primates or to any other eutherians. The classification of the Tupaiidae in a separate order, Scandentia, is supported.  相似文献   

7.
The elucidation of patterns of cranial skeletal maturation and growth in fossil hominids is possible not only through dental studies but also by mapping different aspects of ossification in both extant African apes and humans. However, knowledge of normal skeletal development in large samples of extant great apes is flimsy. To remedy this situation, this paper offers an extensive survey and thorough discussion of the ossification of the posterior border of the sphenoid greater wing. Indeed, this area provides much information about basicranial skeletal maturation. We investigate three variants: the absence of the foramen spinosum and the position of both the foramen spinosum and the foramen ovale in relation to the sphenosquamosal suture. Providing original data about humans and 1,425 extant great ape skulls and using a sample of 64 fossil hominids, this study aimed to test whether different ossification patterns occurred during the course of human evolution. The incidence of three derived morphologies located on the posterior border of the sphenoid greater wing increases during human evolution at different geological periods. The evolutionary polarity of these three derived morphologies is assessed by outgroup comparison and ontogenetic methods. During human evolution, there is a clear trend for the foramen spinosum to be present and wholly located on the posterior area of the sphenoid greater wing. Moreover, in all the great ape species and in Australopithecus afarensis, the sphenosquamosal suture may split the foramen ovale. Inversely, the foramen ovale always lies wholly within the sphenoid greater wing in Australopithecus africanus, robust australopithecines, early Homo, H. erectus (and/or H. ergaster), and Homo sapiens. From ontogenetic studies in humans, we conclude that, during human evolution, the ossification of the posterior area of the sphenoid greater wing progressively surrounded the middle meningeal artery (passing through the foramen spinosum) and the small meningeal artery (passing through the foramen ovale). Am J Phys Anthropol 107:387–399, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The chondrocranium of the suckermouth armored catfish Ancistrus cf. triradiatus was studied. Its development is described based on specimens ranging from small prehatching stages with no cartilage visible, to larger posthatching stages where the chondrocranium is reducing. Cleared and stained specimens, as well as serial sections, revealed a cartilaginous skeleton with many features common for Siluriformes, yet several aspects of A. cf. triradiatus are not seen as such in other catfishes, or to a lesser extent. The skull is platybasic, but the acrochordal cartilage is very small and variably present, leaving the notochord protruding into the hypophyseal fenestra in the earlier stages. The ethmoid region is slender, with a rudimentary solum nasi. A lateral commissure and myodomes are present. The larger posterior myodome is roofed by a prootic bridge. The maxillary barbel is supported by a conspicuous cartilaginous rod from early prehatching stages. The ceratohyal has four prominent lateral processes. Infrapharyngobranchials I-II do not develop. During ontogeny, the skull lengthens, with an elongated ethmoid, pointing ventrally, and a long and bar-shaped hyosymplectic-pterygoquadrate plate. Meckel's cartilages point medially instead of rostrally.  相似文献   

9.
本文介绍了以短吻云南兽为代表的一种耳区结构.它表明在三列齿类爬行动物里已经出现有发育的耳蜗壳以及在其内侧通过的颈内动脉等进步性质,听腔亦趋封闭.云南兽的中耳腔外侧出现了一条曲折的骨质外耳道,侧枕骨突外侧明显的沟可能表明方骨后耳膜之存在.  相似文献   

10.
11.
Olivier  Rieppel  Charles  Crumly 《Journal of Zoology》1997,243(2):351-380
The phylogenetic analysis of skull characteristics, along with data derived from lung and hemipenial morphology, does not support monophyly of the predominantly terrestrial chamaeleons, Brookesiinae ( Brookesia plus Rhampholeon ), as sister-taxon of a monophyletic clade of arboreal chamaeleons, the Chamaeleoninae. Instead, the phylogenetic interrelationships of chamaeleonine lizards are ( Brookesia ("Rhampholeon" (Bradypodion, Chamaeleo) ). The monophyly of the genus Rhampholeon is not demonstrated. The arboreal chamaeleons form a monophyletic group comprising two genera, Bradypodion and Chamaeleo. Bradypodion may be placed as sister-group of the genus Chamaeleo , but its phyletic position and monophyly cannot at present be corroborated.
This study documents that there is a high degree of intraspecific variability in skull characters which may be due to paedomorphic reduction in the skull, especially of small species. Characters affected by a variable degree of ossification include the separation of a prefrontal fontanelle, the contact of the squamosal with the parietal, the size and position of the fenestra vestibuli, the degree of ossification in the basicranial rim of the fenestra, the extent of ossification of the pterygoid wing, and the shape of the skull roof as indicated by the bones forming the dorsal margin of the orbit. The closure of the lateral aperture of the occipital recess might indicate that miniaturization, and concomitant paedomorphosis, may have played a role in the initial phases of chamaeleonine phylogeny.  相似文献   

12.
The study of the development of of the chondrocranium in chick embryos with unilateral (right-sided) anotia revealed the following main characteristics. 1. The median axes of the chordal and the prechordal part of the cranial base are not in a straight line but show a deviation toward the right side. The angle between the two axes has its vertex in the region of the foramen hypophyseos. 2. The metotic cartilage and the foramina of the IXth and Xth cranial nerves are normal in position. 3. The tectum synoticum develops later and to a lesser extent than normal. 4. Between the basal plate, the metotic cartilage, the occipital arch and the supracapsular cartilage a foramen is formed which, later in development, is closed by outgrowths of the metotic cartilage and the basal plate. 5. The "optic area" shows a practically normal appearance which indicates that the cartilaginous ventral wall of the lagenal capsule is of basal plate origin. 6. The pro-otic process develops practically normal and, hence, is independent of the ear capsule. 7. The quadrate cartilage and the right lower jaw are displaced ventro-posteriorward. The earliest development of the perichondral bones shows some particularities which are closely correlated with the development of the various cartilaginous structures.  相似文献   

13.
The study of the skull of the Late Permian cynodont Dvinia prima Amalitzky, 1922 shows a combination of the general primitive skull design (many incisors, preservation of the precanine and large interpterygoid fenestra, etc) with the development of a number of “advanced” features (expansion of the temporal fenestra, development of the parietal crest, and closed pineal foramen, unusual structure of the premaxilla, complicated postcanines, and reduction of the angular wing). Dvinia prima is treated as a specialized omnivore and assigned to the family Dviniidae Sushkin, 1928 of the superfamily Thrinaxodontoidea Seeley, 1894.  相似文献   

14.
Sutures between ornamented bones of Discosauriscus austriacus are mostly simple, but there are also more complicated, rarely serrated, sutures between some bones. In small individuals, the sutures are simple, but the same sutures also occur in the largest specimens. The character of the sutures and the incomplete ossification of bones around the pineal foramen indicate the larva type of organization of Discosauriscus The fenestra between premaxillaries and nasals appears to be absent. In the majority of specimens, a squamosal-intertemporal sutural contact is present, althought it is sometimes reduced and in a few cases interrupted by a postorbital and supratemporal contact Therefore the character 'intertemporal-squamosal suture present or absent' cannot be used in this rigorous sense for testing the relationships of early tetrapods. The configuration of the suture between both parietals in osteolepiforms, Discosauriscus , and various early amphibians and reptiles indicates that the bones enclosing the pineal foramen in osteolepifonns are frontals. *** D iscosauriscus . Seymouriamorpha, Lower Permian tetrapod, skull exoskeleton, sutures.  相似文献   

15.
Studied the morphogenesis of the Fenestra rotunda and of the Aquaeductus cochleae in a series of 23 dated embryos and postnatal stages of Tupaia belangeri. The ontogeny of the Fenestra rotunda is the result of the caudal growth of the Processus recessus (DE BEER 1937). The Processus arises from the caudal ridge of the floor of the cochlear part of the otic capsule. On the 28th d of ontogeny (the gestation period of Tupaia belangeri is 43 d), it is fused with the lateral edge of the parachordal plate. On the 40th d, the Processus recessus joins the ventral surface of the canalicular part of the otic capsule, which develops a small cartilaginous process to meet it. In Tupaia, the Processus recessus is a large cartilaginous plate in a nearly horizontal position. It does not reach the plane of the Foramen perilymphaticum. The Processus recessus can be regarded as a part of the parachordal plate that was shifted laterally together with the Recessus scalae tympani by the enlargement of the cochlear part of the otic capsule in the ancestors of living mammals. The Processus forms the floor of the Aquaeductus cochleae, by which the laterally shifted Recessus scalae tympani of mammals remains connected with the cranial cavity. The Aquaeductus cochleae contains the Ductus perilymphaticus connecting the Cavum perilymphaticum of the inner ear with the Cavum leptomeningeum. The Fenestra rotunda of mammals is homologous with the lateral aperture of the Recessus scalae tympani of reptiles. In some mammals (e.g. Micropotamogale), the Membrana tympani secundaria spans the lateral aperture of the Recessus scalae tympani, as in many reptiles. Both the Membrana tympani secundaria of reptiles and that of mammals are homologous. Secondarily, in a large number of therian mammals (e.g. Myotis [Frick 1952]), the tympanic cavity extends into the Recessus scalae tympani displacing the Membrana tympani secundaria medially from the lateral aperture of the Recessus scalae tympani (= Fenestra rotunda of mammals) and even into the plane of the Foramen perilymphaticum. Thereby the Fossula fenestrae rotundae is formed, which in bounded medially by the Membrana tympani secundaria.  相似文献   

16.
Among Artiodactylamorpha, dichobunoids are some of the oldest fossil species that have been associated with Artiodactyla, the crown clade that includes hippopotamids, camelids, suoids, ruminants, and cetaceans. These important fossil species are known from early Eocene rocks of North America, Europe, and Asia, but their phylogenetic position has yet to be well resolved. Before generating such a phylogeny, it is first critical to document all of the anatomy of known dichobunoid fossils. Here we use CT scans to describe previously undescribed anatomy of the petrosal bone, a complex part of the mammalian skull that contains many variable and phylogenetically informative features. Results show that these extinct species share a number of features that are not documented in modern species including a lateral process of the epitympanic wing constituting the medial border of the piriform fenestra, and a tegmen tympani foramen that may have given passage to the ramus superior of the stapedial artery. Future comprehensive phylogenetic studies may show that many of these characters are plesiomophic for Artiodactylamopha. Some species (Diacodexis, Homacodon and ?Helohyus) exhibit a dorsolateral exposure of the mastoid region of the petrosal on the temporal part of the cranium. This uncommon feature has, to our knowledge, not been reported in another euungulate group.  相似文献   

17.
The purpose of this article is to gain insight into the ossification sequence of the palatoquadrate and the adjacent lateral cranial wall of prehatching Alligator mississippiensis, a process about which there is almost no published information. Results were obtained by studying serial histological sections of the series of ontogenetic stages and enlarged wax-plate models of several stages. The cartilage of the palatoquadrate starts to ossify endochondrally in the quadrate portion of the pars pterygoquadrata palatoquadrati in Stage 6A. In this stage, a bone, called the lamina palatoquadrati anterior here, appears at and close to the anteromedial wall of the cartilaginous pterygoid portion of the pars pterygoquadrata. The lamina palatoquadrati anterior ossifies in membrane. Later in ontogeny, the lamina palatoquadrati anterior spreads into the cavum epiptericum and sheathes the posterior portion of the trigeminal ganglion laterally. The jaw adductor muscles insert at the outer surface of the lamina palatoquadrati anterior. The lamina palatoquadrati anterior is a new structure not previously recorded in crocodylians or any other Recent reptile. The topology, mode of ossification, and functional anatomy of the lamina palatoquadrati anterior correspond to those of the membranous ossification of the alisphenoid of marsupials. Another bone, called the lamina prootici anterior here, spreads in membrane from the anterolateral wall of the prootic portion of the otic capsule into the prootic fenestra, above the trigeminal ganglion. The lamina prootici anterior represents a structure not recorded previously in crocodylians. It contributes to the orbitotemporal braincase wall.  相似文献   

18.
We have examined neuronal differentiation and the formation of axon tracts in the embryonic forebrain and midbrain of the zebrafish, between 1 and 2 days postfertilisation. Axons were visualised with three techniques; immunocytochemistry (using HNK-1 and antiacetylated tubulin antibodies) and horseradish peroxidase (HRP) labelling in whole-mounted brains, and transmission electron microscopy. Differentiation was monitored by histochemical staining for acetylcholinesterase (AChE). These independent methods demonstrated that a simple grid of tracts and commissures forms the initial axon scaffold of the brain. At 1 day, the olfactory nerve, four commissures, their associated tracts and three other non-commissural tracts are present. By 2 days, these tracts and commissures have all greatly enlarged and, in addition, the optic nerve and tract, and three new commissures and their associated tracts have been added. Small applications of HRP at various sites revealed the origins and projections of some of these earliest axons. Retrogradely labelled cell bodies originated from regions that were also positive for AChE activity. At 1 day, HRP-labelled axons were traced: (1) from the olfactory placode through the olfactory nerve to the dorsal telencephalon; (2) from the telencephalon into the tract of the anterior commissure and also to the postoptic region of the diencephalon; (3) from the hindbrain through the ventral midbrain and diencephalon to the postoptic commissure; (4) from the dorsal diencephalon (in or near the epiphysis) to the tract of the postoptic commissure; (5) from ventral and rostral midbrain through the posterior commissure. Three new projections were demonstrated at 2 days: (1) from the retina through the tract of the postoptic commissure to the tectum; (2) from the telencephalon to the contralateral diencephalon; and (3) from the telencephalon to the ventral flexure. These results show that at 1 day, the zebrafish brain is impressively simple, with a few small, well-separated tracts but by 2 days the brain is already considerably more complex. Most of the additional axons added onto pre-existent tracts rather than pioneered new ones supporting the notion that other axons play a crucial role in the guidance of early central nervous system (CNS) axons.  相似文献   

19.
Three-dimensionally preserved and chemically prepared skulls and natural casts of representatives of the families Benthosuchidae, Melosauridae, and Capitosauridae yield data on the structure of the ethmoidal endocranium, i. e. of those nasal cranial structures that consisted originally of cartilage. This study demonstrates that the ethmoidal endocranium was principally a dorsoventrally compressed plate, pierced by a broad and oblique canal which communicated anteriorly with the outer dorsal surface by the fenestra endonarina and posteriorly with the mouth cavity by the fenestra endochoanalis(seu foris). The canal was very short, and housed the olfactory organ. The ethmoidal endocranium was connected with the palatoquadrate by the commissura quadratocranialis anterior; there was no lateral ethmoidal commissure, however, in older individuals the anterior section of the palatoquadrate might also contact the postchoanal part of the nasal endocranial skeleton.  相似文献   

20.
《Journal of morphology》2017,278(12):1739-1753
Patterns of ossification and chondrification are well‐described for several species of turtles, but details of the chondrocranial anatomy are known for only a handful of species. Cleared and double‐stained embryos of Graptemys pseudogeographica were used to examine the fully formed chondrocranium and the formation, chondrification, and ossification of the cranium. The chondrocranium of G. pseudogeographica possesses an unusually large, irregularly shaped foramen epiphaniale that is joined with the fenestra olfactoria. As in other emydids, and many turtles generally, the taenia marginalis is present only as a small projection and the taenia medialis is lacking in mature stages of embryonic development. Ossification data for G. pseudogeographica are consistent with those of other Testudines in that the dentary and maxilla (dermal elements of the upper and lower jaws) ossify early, whereas the articular (an endochondral bone of the lower jaw) ossifies relatively late. Additionally, comparative ossification shows that the vomer is quite variable in its relative timing of ossification across Testudines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号