首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds.  相似文献   

2.
3.
Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki?=?15.08?μM, 0.34?μM, 0.71?μM) and of human AKR1B10 (Ki?=?20.11?μM, 2.25?μM, 1.95?μM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure–activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.  相似文献   

4.
5.
6.
Joshi A  Rajput S  Wang C  Ma J  Cao D 《Biological chemistry》2010,391(12):1371-1378
Aldo-keto reductase family 1 member B10 (AKR1B10), over-expressed in multiple human cancers, might be implicated in cancer development and progression via detoxifying cytotoxic carbonyls and regulating fatty acid synthesis. In the present study, we investigated the ortholog of AKR1B10 in mice, an ideal modeling organism greatly contributing to human disease investigations. In the mouse, there are three aldo-keto reductase family 1 subfamily B (AKR1B) members, i.e., AKR1B3, AKR1B7, and AKR1B8. Among them, AKR1B8 has the highest similarity to human AKR1B10 in terms of amino acid sequence, computer-modeled structures, substrate spectra and specificity, and tissue distribution. More importantly, similar to human AKR1B10, mouse AKR1B8 associates with murine acetyl-CoA carboxylase-α and mediates fatty acid synthesis in colon cancer cells. Taken together, our data suggest that murine AKR1B8 is the ortholog of human AKR1B10.  相似文献   

7.
Farnesol (FOH) and geranylgeraniol (GGOH) with multiple biological actions are produced from the mevalonate pathway, and catabolized into farnesoic acid and geranylgeranoic acid, respectively, via the aldehyde intermediates (farnesal and geranylgeranial). We investigated the intracellular distribution, sequences and properties of the oxidoreductases responsible for the metabolic steps in rat tissues. The oxidation of FOH and GGOH into their aldehyde intermediates were mainly mediated by alcohol dehydrogenases 1 (in the liver and colon) and 7 (in the stomach and lung), and the subsequent step into the carboxylic acids was catalyzed by a microsomal aldehyde dehydrogenase. In addition, high reductase activity catalyzing the aldehyde intermediates into FOH (or GGOH) was detected in the cytosols of the extra-hepatic tissues, where the major reductase was identified as aldo-keto reductase (AKR) 1C15. Human reductases with similar specificity were identified as AKR1B10 and AKR1C3, which most efficiently reduced farnesal and geranylgeranial among seven enzymes in the AKR1A-1C subfamilies. The overall metabolism from FOH to farnesoic acid in cultured cells was significantly decreased by overexpression of AKR1C15, and increased by addition of AKR1C3 inhibitors, tolfenamic acid and R-flurbiprofen. Thus, AKRs (1C15 in rats, and 1B10 and 1C3 in humans) may play an important role in controlling the bioavailability of FOH and GGOH.  相似文献   

8.
A recent rat genomic sequencing predicts a gene Akr1b10 that encodes a protein with 83% sequence similarity to human aldo-keto reductase (AKR) 1B10. In this study, we isolated the cDNA for the rat AKR1B10 (R1B10) from rat brain, and examined the enzymatic properties of the recombinant protein. R1B10 utilized NADPH as the preferable coenzyme, and reduced various aldehydes (including cytotoxic 4-hydroxy-2-hexenal and 4-hydroxy- and 4-oxo-2-nonenals) and α-dicarbonyl compounds (such as methylglyoxal and 3-deoxyglucosone), showing low Km values of 0.8-6.1 μM and 3.7-67 μM, respectively. The enzyme also reduced glyceraldehyde and tetroses (Km = 96-390 μM), although hexoses and pentoses were inactive and poor substrates, respectively. Among the substrates, 4-oxo-2-nonenal was most efficiently reduced into 4-oxo-2-nonenol, and its cytotoxicity against bovine endothelial cells was decreased by the overexpression of R1B10. R1B10 showed low sensitivity to aldose reductase inhibitors, and was activated to approximately two folds by valproic acid, and alicyclic and aromatic carboxylic acids. The mRNA for R1B10 was expressed highly in rat brain and heart, and at low levels in other rat tissues and skin fibroblasts. The results suggest that R1B10 functions as a defense system against oxidative stress and glycation in rat tissues.  相似文献   

9.
Carbonyl compounds, which are naturally produced and augmented under oxidative stress, have deleterious effects on the reproductive system. The aldo-keto reductase (AKR) family of enzymes catalyze the reductive detoxification of various carbonyl compounds in an NADPH-dependent manner. To elucidate involvement of AKR in detoxification of endogenously produced carbonyls in the male reproductive system, we investigated the differential expression and tissue localization of aldehyde reductase (ALR) and protein adducts produced by reaction with lipid peroxidation products. A strong immunoreactivity to an anti-ALR antibody was observed in the epithelia of the epididymis, vas deferens, seminal vesicle, and prostate gland. Virtually the same cells were stained with a monoclonal antibody (mAb) 5F6, raised against an acrolein-modified protein. In the testis, however, mAb5F6 specifically stained the nuclei of somatic cells and less differentiated spermatogenic cells. While acrolein inactivated glutathione reductase, an enzyme involved in recycling oxidized glutathione, AKR activity was affected at the high concentration only. The colocalization of lipid peroxidation products and AKR in the epithelia of the male genital tract indicates that these tissues are exposed to oxidative stress and possess a protective system coordinately.  相似文献   

10.
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, was identified as a biomarker of lung cancer, exhibiting high sequence identity with human aldose reductase (AKR1B1). Using recombinant AKR1B10 and AKR1B1, we compared their substrate specificity for biogenic compounds and inhibition by endogenous compounds and found the following unique features of AKR1B10. AKR1B10 efficiently reduced long-chain aliphatic aldehydes including farnesal and geranylgeranial, which are generated from degradation of prenylated proteins and metabolism of farnesol and geranylgeraniol derived from the mevalonate pathway. The enzyme oxidized aliphatic and aromatic alcohols including 20α-hydroxysteroids. In addition, AKR1B10 was inhibited by steroid hormones, bile acids and their metabolites, showing IC50 values of 0.03-25 μM. Kinetic analyses of the alcohol oxidation and inhibition by the steroids and tolrestat, together with the docked model of AKR1B10-inhibitor complex, suggest that the inhibitory steroids and tolrestat bind to overlapping sites within the active site of the enzyme-coenzyme complex. Thus, we propose a novel role of AKR1B10 in controlling isoprenoid homeostasis that is important in cholesterol synthesis and cell proliferation through salvaging isoprenoid alcohols, as well as its metabolic regulation by endogenous steroids.  相似文献   

11.
The yakC gene in Schizosaccharomyces pombe, which encodes yakC protein (YakC), a potential member of an aldo-keto reductase (AKR) family, was cloned and expressed in Escherichia coli cells. The recombinant YakC purified to homogeneity catalyzed the reduction of 2-nitrobenzaldehyde (k(cat), 44.1 s(-1), K(m), 0.185 +/- 0.018 mM), 2-phthalaldehyde (19.8, 0.333 +/- 0.032), and pyridine-2-aldehyde (7.64, 0.302 +/- 0.028). Neither pyridoxal nor other compounds examined acted as substrates. NADPH, but not NADH, was a hydrogen donor. The enzyme is a monomer with a molecular weight of 38,900 +/- 6,600 (SDS-PAGE). The amino acid sequence deduced from yakC showed the highest (34%) identity with that of pyridoxal reductase (AKR8A1) among the identified AKRs. Twenty-one function-unknown proteins showed 40% or higher identity to the deduced amino acid sequence: DR2261 protein of Deionococcus radiodurans showed the highest (50%) identity. The predicted secondary structure of YakC is similar to that of human aldose reductase, a representative AKR. The results establish YakC as the first member of a new AKR family, AKR13. The yeast cells contained enzyme(s) other than YakC and pyridoxal reductase with the ability to reduce 2-nitrobenzaldehyde: total (100%) activity in the crude extract consisted of about 23% YakC, about 44% pyridoxal reductase, and about 33% other enzyme(s).  相似文献   

12.
Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone ('core' aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte-endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C(16:0-20:4) phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C(16:0-20:4) phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are efficient phospholipid aldehyde reductases, with non-overlapping substrate specificity, and may be involved in tissue-specific metabolism of endogenous or dietary phospholipid aldehydes.  相似文献   

13.
14.
A new member of the aldo–keto reductase (AKR) superfamily with 3-dehydroecdysone reductase activity was found in the silkworm Bombyx mori upon induction by the insecticide diazinon. The amino acid sequence showed that this enzyme belongs to the AKR2 family, and the protein was assigned the systematic name AKR2E4. In this study, recombinant AKR2E4 was expressed, purified to near homogeneity, and kinetically characterized. Additionally, its ternary structure in complex with NADP+ and citrate was refined at 1.3 Å resolution to elucidate substrate binding and catalysis. The enzyme is a 33-kDa monomer and reduces dicarbonyl compounds such as isatin and 17α-hydroxy progesterone using NADPH as a cosubstrate. No NADH-dependent activity was detected. Robust activity toward the substrate inhibitor 3-dehydroecdysone was observed, which suggests that this enzyme plays a role in regulation of the important molting hormone ecdysone. This structure constitutes the first insect AKR structure determined. Bound NADPH is located at the center of the TIM- or (β/α)8-barrel, and residues involved in catalysis are conserved.  相似文献   

15.
Human aldo-keto reductase (AKR) 1C3 (type 2 3alpha-hydroxysteroid dehydrogenase/type 5 17beta-hydroxysteroid dehydrogenase) catalyzes androgen, estrogen, and prostaglandin metabolism. AKR1C3 is therefore implicated in regulating ligand access to the androgen receptor, estrogen receptor, and peroxisome proliferator activating receptor gamma in hormone target tissues. Recent reports on close relationships between ARK1C3 and various cancers including breast and prostate cancers implicate the involvement of AKR1C3 in cancer development or progression. We previously described the characterization of an isoform-specific monoclonal antibody against AKR1C3 that does not cross-react with related, >86% sequence identity, human AKR1C1, AKR1C2, or AKR1C4, human aldehyde reductase AKR1A1, or rat 3alpha-hydroxysteroid dehydrogenase (AKR1C9). In this study, a clone of murine monoclonal antibody raised against AKR1C3 was identified and characterized for its recognition of rat homolog. Tissue distribution of human AKR1C3 and its rat homolog in adult genitourinary systems including kidney, bladder, prostate, and testis was studied by IHC. A strong immunoreactivity was detected not only in classically hormone-associated tissues such as prostate and testis but also in non-hormone-associated tissues such as kidney and bladder in humans and rats. The distribution of these two enzymes was comparable but not identical between the two species. These features warrant future studies of AKR1C3 in both hormone- and non-hormone-associated tissues and identification of the rodent homolog for establishing animal models.  相似文献   

16.
Aldose reductase is an important enzyme in the polyol pathway, where glucose is converted to fructose, and sorbitol is released. Aldose reductase activity increases in diabetes as the glucose levels increase, resulting in increased sorbitol production. Sorbitol, being less cell permeable tends to accumulate in tissues such as eye lenses, peripheral nerves and glomerulus that are not insulin sensitive. This excessive build-up of sorbitol is responsible for diabetes associated complications such as retinopathy and neuropathy. In continuation of our interest to design and discover potent inhibitors of aldo-keto reductases (AKRs; aldehyde reductase ALR1 or AKR1A, and aldose reductase ALR2 or AKR1B), herein we designed and investigated a series of new benzoxazinone-thiosemicarbazones (3a-r) as ALR2 and ALR1 inhibitors. Most compounds exhibited excellent inhibitory activities with IC50 values in lower micro-molar range. Compounds 3b and 3l were found to be most active ALR2 inhibitors with IC50 values of 0.52 ± 0.04 and 0.19 ± 0.03 μM, respectively, both compounds were more effective inhibitors as compared to the standard ALR2 inhibitor (sorbinil, with IC50 value of 3.14 ± 0.02 μM).  相似文献   

17.
Aldo-keto reductase (AKR) 1B14, a rat ortholog of mouse androgen-dependent vas deferens protein (AKR1B7), is involved in the synthesis of prostaglandin F and detoxification of 4-oxononenal formed by lipid peroxidation. The NADPH-linked reductase activity of AKR1B14 was activated by various bile acids. Although the activation was increased by decreasing pH from 9.0 to 6.0, the concentrations giving maximum stimulation (2- to 18-fold) were 0.2-6.0 μM for bile acids at pH 7.4. Kinetic analyses of the activation by glycochenodeoxycholic acid in the forward and reverse reactions, together with fluorescence changes and protection against 4-oxononenal-induced inactivation by bile acid, indicate that the bile acid binds to the enzyme and its coenzyme binary complex as a non-essential activator. The bile acid binding to AKR1B14 mainly accelerates the NADP+ dissociation, the rate-limited step of the enzyme reaction. AKR1B7 was also activated by bile acids, but the activation was low and independent of pH. The mutagenesis of His269 and Leu267 of AKR1B14 into the corresponding residues (Arg and Pro, respectively) of AKR1B7 resulted in low and pH-independent activation by bile acids. The results, together with the docking of the bile acid in the recently determined crystal structure of AKR1B14, identify the bile acid-binding site of which His269 plays a key role in significant activation through its electrostatic interaction with the carboxyl group of bile acid, facilitating the release of NADP+.  相似文献   

18.
A subclass of hydroxysteroid dehydrogenases (HSD) are NADP(H)-dependent oxidoreductases that belong to the aldo-keto reductase (AKR) superfamily. They are involved in prereceptor or intracrine steroid modulation, and also act as bile acid-binding proteins. The HSD family members characterized thus far in human and rat have a high degree of protein sequence similarity but exhibit distinct substrate specificity. Here we report the identification of nine murine AKR genes in a cluster on chromosome 13 by a combination of molecular cloning and in silico analysis of this region. These include four previously isolated mouse HSD genes (Akr1c18, Akr1c6, Akr1c12, Akr1c13), the more distantly related Akr1e1, and four novel HSD genes. These genes exhibit highly conserved exon/intron organization and protein sequence predictions indicate 75% amino acid similarity. The previously identified AKR protein active site residues are invariant among all nine proteins, but differences are observed in regions that have been implicated in determining substrate specificity. Differences also occur in tissue expression patterns, with expression of some genes restricted to specific tissues and others expressed at high levels in multiple tissues. Our findings dramatically expand the repertoire of AKR genes and identify unrecognized family members with potential roles in the regulation of steroid metabolism.  相似文献   

19.
The tissue distribution of carbonyl reductase in ovary and liver of various animal species was investigated by measuring the reduction of 13,14-dihydro-15-keto-prostaglandin F2a, a specific substrate for rat ovarian carbonyl reductases, and by means of Western blotting analysis using anti-rat ovarian carbonyl reductase antibody. The highest ovarian carbonyl reductase activity towards 13,14-dihydro-15-keto-PGF2a was found in rat among ten animal species tested, followed by hamster and monkey. The immunoreactive protein was detected in hamster and monkey ovaries. Although carbonyl reductase activity towards 13,14-dihydro-15-keto-PGF2a was not detectable in non-pregnant rabbit ovary, pregnant rabbit ovary showed not only moderate activity but also immunoreactivity with anti-rat ovarian carbonyl reductase antibody. On the other hand, carbonyl reductase activity towards 13,14-dihydro-15-keto-PGF2a was detected in hepatic tissue of all the species tested, except for rat and left-eye flounder. Immunoreactive proteins were present in hepatic tissue of various species that exhibited measurable carbonyl reductase activity towards 13,14-dihydro-15-keto-PGF2a.  相似文献   

20.
1. Antioxidant enzyme activity profiles in red cells of man, rabbit, quail, pig and rat have been investigated and found to exhibit striking differences. 2. No direct correlations between activities of "functionally coupled" enzymes (superoxide dismutase/catalase and glutathione peroxidase/glutathione reductase) were apparent, suggesting their independent regulation. 3. However, activities of red cell catalase and glutathione peroxidase in the various species studied were inversely correlated. 4. This was most evident in quail red cells, which showed negligible catalase activity but the highest levels of glutathione peroxidase of all the species examined. 5. A significant positive correlation between catalase and glutathione reductase activities was also demonstrated. 6. This may be relevant to the suggestion that the binding of NADPH to catalase may serve to decrease the intracellular inactivation of this reducing cofactor which may be limiting in the glutathione reductase reaction. 7. Basal levels of glutathione, which have been claimed to be limiting for the glutathione peroxidase reaction, were found to correlate positively with the activity of this enzyme in red cells. 8. Myocardial tissues also exhibited species-related differences in antioxidant enzyme profiles but these did not bear any obvious relationship to patterns observed in the corresponding red cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号