首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Penicillins and cephalosporins are β-lactam antibiotics widely used in human medicine. The biosynthesis of these compounds starts by the condensation of the amino acids l -α-aminoadipic acid, l -cysteine and l -valine to form the tripeptide δ-l -α-aminoadipyl-l -cysteinyl-d -valine catalysed by the non-ribosomal peptide ‘ACV synthetase’. Subsequently, this tripeptide is cyclized to isopenicillin N that in Penicillium is converted to hydrophobic penicillins, e.g. benzylpenicillin. In Acremonium and in streptomycetes, isopenicillin N is later isomerized to penicillin N and finally converted to cephalosporin. Expression of genes of the penicillin (pcbAB, pcbC, pendDE) and cephalosporin clusters (pcbAB, pcbC, cefD1, cefD2, cefEF, cefG) is controlled by pleitropic regulators including LaeA, a methylase involved in heterochromatin rearrangement. The enzymes catalysing the last two steps of penicillin biosynthesis (phenylacetyl-CoA ligase and isopenicillin N acyltransferase) are located in microbodies, as shown by immunoelectron microscopy and microbodies proteome analyses. Similarly, the Acremonium two-component CefD1–CefD2 epimerization system is also located in microbodies. This compartmentalization implies intracellular transport of isopenicillin N (in the penicillin pathway) or isopenicillin N and penicillin N in the cephalosporin route. Two transporters of the MFS family cefT and cefM are involved in transport of intermediates and/or secretion of cephalosporins. However, there is no known transporter of benzylpenicillin despite its large production in industrial strains.  相似文献   

3.
The conversion of isopenicillin N into penicillin N in Acremonium chrysogenum is catalyzed by an epimerization system that involves an isopenicillin N-CoA synthethase and isopenicillin N-CoA epimerase, encoded by the genes cefD1 and cefD2. Several transformants containing two to seven additional copies of both genes were obtained. Four of these transformants (TMCD26, TMCD53, TMCD242 and TMCD474) showed two-fold higher IPN epimerase activity than the untransformed A. chrysogenum C10, and produced 80 to 100% more cephalosporin C and deacetylcephalosporin C than the parental strain. A second class of transformants, including TMCD2, TMCD32 and TMCD39, in contrast, showed a drastic reduction in cephalosporin biosynthesis relative to the untransformed control. These transformants had no detectable IPN epimerase activity and did not produce cephalosporin C or deacetylcephalosporin C. They also expressed both endogenous and exogenous cefD2 genes only after long periods (72–96 h) of incubation, as shown by Northern analysis, and were impaired in mycelial branching in liquid cultures. The negative effect of amplification of the cefD1 - cefD2 gene cluster in this second class of transformants is not correlated with high gene dosage, but appears to be due to exogenous DNA integration into a specific locus, which results in a pleiotropic effect on growth and cefD2 expression. Communicated by P. J. Punt  相似文献   

4.
5.
6.
By introduction of the cefEF genes of Acremonium chrysogenum and the cmcH gene of Streptomyces clavuligerus, Penicillium chrysogenum can be reprogrammed to form adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA), a carbamoylated derivate of adipoyl-7-aminodeacetoxy-cephalosporanic acid. The cefT gene of A. chrysogenum encodes a cephalosporin C transporter that belongs to the Major Facilitator Superfamily. Introduction of cefT into an ad7-ACCCA-producing P. chrysogenum strain results in an almost 2-fold increase in cephalosporin production with a concomitant decrease in penicillin by-product formation. These data suggest that cephalosporin production by recombinant P. chrysogenum strains is limited by the ability of the fungus to secrete these compounds.  相似文献   

7.
In the filamentous fungus Penicillium chrysogenum, microbodies are essential for penicillin biosynthesis. To better understand the role of these organelles in antibiotics production, we determined the matrix enzyme contents of P. chrysogenum microbodies. Using a novel in silico approach, we first obtained a catalogue of 200 P. chrysogenum proteins with putative microbody targeting signals (PTSs). This included two orthologs of proteins involved in cephalosporin biosynthesis, which we demonstrate to be bona fide microbody matrix constituents. Subsequently, we performed a proteomics based inventory of P. chrysogenum microbody matrix proteins using nano-LC-MS/MS analysis. We identified 89 microbody proteins, 79 with a PTS, including the two known microbody-borne penicillin biosynthesis enzymes, isopenicillin N:acyl CoA acyltransferase and phenylacetyl-CoA ligase. Comparative analysis revealed that 69 out of 79 PTS proteins identified experimentally were in the reference list. A prominent microbody protein was identified as a novel fumarate reductase-cytochrome b5 fusion protein, which contains an internal PTS2 between the two functional domains. We show that this protein indeed localizes to P. chrysogenum microbodies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
Cephamycin C is produced in a nine steps pathway by the actinomycetes S. clavuligerus and N. lactamdurans. The genes encoding the biosynthesis enzymes are clustered in both microorganisms as well as in the cephabacin producer Lysobacter lactamgenus, a Gram negative bacterium. The clusters of genes include genes encoding enzymes common to the biosynthesis of penicillin and cephalosporin C by the eukaryotic producers Penicillium chrysogenum and Cephalosporiun acremonium and genes for steps specific for the formation of the precursor -aminoadipic acid as well as for the enzymes involved in the late modification of the cephalosporin intermediates of the pathway. Present are also genes for proteins involved in the export and/or resistance to cephamycin C. In S. clavuligerus a gene encoding a regulatory protein controlling the formation of cephamycin C and clavulanic acid is also present in the cluster.  相似文献   

10.
Deacetoxycephalosporin C (DAOC), a precursor of cephalosporins excreted by Cephalosporium and Streptomyces species, has been produced in Penicillium chrysogenum transformed with DNA containing a hybrid penicillin N expandase gene (cefEh) and a hybrid isopenicillin N epimerase gene (cefDh). DAOC from a P. chrysogenum transformant was identified by ultraviolet light (UV), high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and mass spectrum analyses. P. chrysogenum transformed with DNA containing cefEh without cefDh did not produce DAOC. Untransformed P. chrysogenum produced penicillin V (phenoxymethylpenicillin) but not DAOC. Transformants also produced penicillin V but, in general, less than untransformed P. chrysogenum. The cefEh and cefDh genes were constructed by replacing the open reading frame (ORF) of cloned P. chrysogenum pcbC and penDE genes with the ORF of the Streptomyces clavuligerus expandase gene, cefE, and the ORF of the Streptomyces lipmanii epimerase gene, cefD, respectively. Analyses of representative transformants suggested that production of DAOC occurred via cefEh and cefDh genes stably integrated in the P. chrysogenum genome. DNA from untransformed P. chrysogenum did not hybridize to cefE or cefD gene probes.  相似文献   

11.
12.
13.
Clavulanic acid is a potent beta-lactamase inhibitor used to combat resistance to penicillin and cephalosporin antibiotics. There is a demand for high-yielding fermentation strains for industrial production of this valuable product. Clavulanic acid biosynthesis is initiated by the condensation of L-arginine and D-glyceraldehyde-3-phosphate (G3P). To overcome the limited G3P pool and improve clavulanic acid production, we genetically engineered the glycolytic pathway in Streptomyces clavuligerus. Two genes (gap1 and gap2) whose protein products are distinct glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) were inactivated in S. clavuligerus by targeted gene disruption. A doubled production of clavulanic acid was consistently obtained when gap1 was disrupted, and reversed by complementation. Addition of arginine to the cultured mutant further improved clavulanic acid production giving a greater than 2-fold increase over wild type, suggesting that arginine became limiting for biosynthesis. This is the first reported application of genetic engineering to channel precursor flux to improve clavulanic acid production.  相似文献   

14.
15.
16.
Abstract An early blocked mutant in cephalosporin biosynthesis ( Acremonium chrysogenum N2) had simultaneously lost 3 enzymes of the cephalosporin biosynthetic pathway (isopenicillin N synthetase, isopenicillin N epimerase and deacetoxycephalosporin C synthetase) and accumulated the tripeptide α-aminoadipyl-cysteinyl-valine. An overproducing mutant ( A. chrysogenum C-10) showed a 2-fold increase in the same 3 enzymes throughout fermentation, with respect to the low-producing strain A. chrysogenum CW-19. These results suggest that expression of the genes coding for cephalosporin biosynthetic enzymes is altered in a coordinate form in these mutants.  相似文献   

17.
The Acremonium chrysogenum cephalosporin biosynthetic genes are divided in two different clusters. The central step of the biosynthetic pathway (epimerization of isopenicillin N to penicillin N) occurs in peroxisomes. We found in the “early” cephalosporin cluster a new ORF encoding a regulatory protein (CefR), containing a nuclear targeting signal and a “Fungal_trans” domain. Targeted inactivation of cefR delays expression of the cefEF gene, increases penicillin N secretion and decreases cephalosporin production. Overexpression of the cefR gene decreased (up to 60%) penicillin N secretion, saving precursors and resulting in increased cephalosporin C production. Northern blot analysis revealed that the CefR protein acts as a repressor of the exporter cefT and exerts a small stimulatory effect over the expression level of cefEF that explains the increased cephalosporin yields observed in transformants overexpressing cefR. In summary, we describe for the first time a modulator of beta-lactam intermediate transporters in A. chrysogenum.  相似文献   

18.
19.
1. The production of penicillin N, but not that of cephalosporin C, was inhibited by the addition of d-valine to suspensions in water of washed mycelium of Cephalosporium sp. 8650. The production of cephalosporin C was selectively inhibited by gamma-hydroxyvaline. 2. l-[(14)C]Valine was taken up rapidly and virtually completely by suspensions of washed mycelium but d-[(14)C]valine and alpha-oxo[(14)C]-isovalerate were taken up relatively slowly. 3. Part of the l-valine was rapidly degraded in the mycelium and part was incorporated into protein. Turnover of the valine in the amino acid pool was estimated to occur in 10-17min. 4. No detectable amount of l-[(14)C]valine was converted into the d-isomer in the mycelium. alpha-Oxo[(14)C]isovalerate was rapidly converted into l-[(14)C]valine in mycelium and mycelial extracts. 5. d-[(14)C]Valine was partially converted into the l-isomer in the mycelium and (14)C from d-valine was incorporated into protein. 6. The labelling of penicillin N and cephalosporin C by (14)C from l-[(14)C]valine was consistent with the view that l-valine is a direct precursor of C(5) fragments of both antibiotics and that any intermediates involved are present in relatively small pools in rapid turnover. 7. Labelling of the antibiotics with (14)C from d-[1-(14)C]valine appeared to occur after the latter had been converted into the l-isomer. Unlabelled d-valine did not decrease the efficiency of incorporation of (14)C from l-[1-(14)C]valine. 8. Intracellular peptide material which contained, among others, residues of alpha-aminoadipic acid, cysteine and valine, was rapidly labelled by (14)C from l-[1-(14)C]valine in a manner consistent with it being an intermediate in the biosynthesis of one or both of the antibiotics. 9. Labelling of penicillin N from l-[1-(14)C]valine occurred more rapidly than that of cephalosporin C. However, the effects of d-valine and gamma-hydroxyvaline on antibiotic production and the course of labelling of the antibiotics from l-[(14)C]valine could not readily be explained on the assumption that penicillin N was a precursor of cephalosporin C.  相似文献   

20.
Deacetoxycephalosporin C synthase (DAOCS) is an iron(II) and 2-oxoglutarate-dependent oxygenase that catalyzes the conversion of penicillin N to deacetoxycephalosporin C, the committed step in the biosynthesis of cephalosporin antibiotics. The crystal structure of DAOCS revealed that the C terminus of one molecule is inserted into the active site of its neighbor in a cyclical fashion within a trimeric unit. This arrangement has hindered the generation of crystalline enzyme-substrate complexes. Therefore, we constructed a series of DAOCS mutants with modified C termini. Oxidation of 2-oxoglutarate was significantly uncoupled from oxidation of the penicillin substrate in certain truncated mutants. The extent of uncoupling varied with the number of residues deleted and the penicillin substrate used. Crystal structures were determined for the DeltaR306 mutant complexed with iron(II) and 2-oxoglutarate (to 2.10 A) and the DeltaR306A mutant complexed with iron(II), succinate and unhydrated carbon dioxide (to 1.96 A). The latter may mimic a product complex, and supports proposals for a metal-bound CO(2) intermediate during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号