首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Endogenous glucocorticoids have diverse physiological effects and are important regulators of metabolism, immunity, cardiovascular function, musculoskeletal health and central nervous system activity. Synthetic glucocorticoids have received widespread attention for their potent anti-inflammatory activity and have become an important class of drugs used to augment endogenous glucocorticoid activity for the treatment of a host of chronic inflammatory conditions. Chronic use of synthetic glucocorticoids is associated with a number of adverse effects as a result of the persistent dysregulation of glucocorticoid sensitive pathways. A failure to consider the pronounced circadian rhythmicity of endogenous glucocorticoids can result in either supraphysiological glucocorticoid exposure or severe suppression of endogenous glucocorticoid secretion, and is thought be a causal factor in the incidence of adverse effects during chronic glucocorticoid therapy. Furthermore, given that synthetic glucocorticoids have potent feedback effects on the hypothalamic-pituitary-adrenal (HPA) axis, physiological factors which can give rise to individual variability in HPA axis activity such as sex, age, and disease state might also have substantial implications for therapy. We use a semi-mechanistic mathematical model of the rodent HPA axis to study how putative sex differences and individual variability in HPA axis regulation can influence the effects of long-term synthetic exposure on endogenous glucocorticoid circadian rhythms. Model simulations suggest that for the same drug exposure, simulated females exhibit less endogenous suppression than males considering differences in adrenal sensitivity and negative feedback to the hypothalamus and pituitary. Simulations reveal that homeostatic regulatory variability and chronic stress-induced regulatory adaptations in the HPA axis network can result in substantial differences in the effects of synthetic exposure on the circadian rhythm of endogenous glucocorticoids. In general, our results provide insight into how the dosage and exposure profile of synthetic glucocorticoids could be manipulated in a personalized manner to preserve the circadian dynamics of endogenous glucocorticoids during chronic therapy, thus potentially minimizing the incidence of adverse effects associated with long-term use of glucocorticoids  相似文献   

2.
3.
Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth.  相似文献   

4.
Among vertebrates, short-term elevations of glucocorticoid hormones (corticosterone or cortisol) facilitate a suite of physiological and behavioral changes aimed at overcoming environmental perturbations or other stressful events. However, chronically elevated glucocorticoids can have deleterious physiological consequences, and it is still unclear as to what constitutes an adaptive physiological response to long-term stress. In this study, we experimentally exposed European wild rabbits Oryctolagus cuniculus to a source of long-term stress (simulated through a 2- to 4-week period of captivity) and tested whether glucocorticoid physiology predicted two major components of rabbit fitness: body condition and survival probability. Following exposure to long-term stress, moderately elevated serum corticosterone and fecal glucocorticoid metabolites levels in the wild rabbits were negatively associated with body condition, but positively associated with subsequent survival upon release. Our results suggest that the cost of maintaining elevated corticosterone levels in terms of decreased body condition is balanced by the increased chance of survival upon release.  相似文献   

5.
6.
Glucocorticoids are important steroid hormones. As an outstanding scientific discovery, the scientist who discovered glucocorticoids was awarded the Nobel Prize in Physiology and Medicine in 1950. Cortisone (hydrocortisone) is a natural glucocorticoid, which is secreted with circadian rhythm by the cortical cells of adrenal glands. Physiologically, about 10-20 mg of hydrocortisone are secreted each day for maintaining homeostasis. Since the biological half-life of natural glucocorticoid is short, scientists developed various synthetic glucocorticoids including prednisone, prednisolone, methylprednisolone, triamcinolone, dexamethasone, betamethasone, and so on. These synthetic glucocorticoids are generated by modifying some structures based on the cortisone backbone, leading to extension of their biological half-life with stronger activities. In the face of severe infection, allergy, shock, trauma, pain, and other stresses, the demand for glucocorticoids increases dramatically. It is critical to supplement extra glucocorticoids to protect the biological functions of vital organs. However, the amount and duration of glucocorticoid administration need to be carefully adjusted, because a series of side effects may occur after long-term or high-dose usage of glucocorticoids. This review article will discuss the application of glucocorticoids in the treatment of patients with severe or critical COVID-19 and solid tumors of advanced stage. The controversy of using glucocorticoid in medical community will also be discussed. This review article will help doctors and basic researchers better understand the practical application of glucocorticoids.  相似文献   

7.
The rise in consumption of refined sugars high in fructose appears to be an important factor for the development of obesity and metabolic syndrome. Fructose has been shown to be involved in genesis and progression of the syndrome through deregulation of metabolic pathways in adipose tissue. There is evidence that enhanced glucocorticoid regeneration within adipose tissue, mediated by the enzyme 11beta-hydroxysteroid dehydrogenase Type 1 (11βHSD1), may contribute to adiposity and metabolic disease. 11βHSD1 reductase activity is dependent on NADPH, a cofactor generated by hexose-6-phosphate dehydrogenase (H6PDH). We hypothesized that harmful effects of long-term high fructose consumption could be mediated by alterations in prereceptor glucocorticoid metabolism and glucocorticoid signaling in the adipose tissue of male Wistar rats. We analyzed the effects of 9-week drinking of 10% fructose solution on dyslipidemia, adipose tissue histology and both plasma and tissue corticosterone level. Prereceptor metabolism of glucocorticoids was characterized by determining 11βHSD1 and H6PDH mRNA and protein levels. Glucocorticoid signaling was examined at the level of glucocorticoid receptor (GR) expression and compartmental redistribution, as well as at the level of expression of its target genes (GR, phosphoenolpyruvate carboxyl kinase and hormone-sensitive lipase). Fructose diet led to increased 11βHSD1 and H6PDH expression and elevated corticosterone level within the adipose tissue, which was paralleled with enhanced GR nuclear accumulation. Although the animals did not develop obesity, nonesterified fatty acid and plasma triglyceride levels were elevated, indicating that fructose, through enhanced prereceptor metabolism of glucocorticoids, could set the environment for possible later onset of obesity.  相似文献   

8.
On the premise that the differential effects of glucocorticoids on various aspects of the immune response may be mediated by differences in the glucocorticoid receptors in the effector cells, subpopulations of human peripheral blood lymphocytes were examined for these receptors as well as for glucocorticoid responsiveness. Purified T and non-T lymphocytes, when studied by a sensitive whole cell assay technique, contained equivalent amounts of specific glucocorticoid receptor, which, by binding affinity and specificity measurements, were indistinguishable from each other. Furthermore, under in vitro incubation conditions, macromolecular synthesis in both of these cell populations was inhibited by glucocorticoid at concentrations which saturated the receptor sites. It is concluded that the putative differential effects of glucocorticoids on T and non-T lymphocyte-associated functions are probably not mediated by differences in the glucocorticoid receptors in these cell populations.  相似文献   

9.
A growing body of evidence from across taxa suggests that exposure to elevated levels of glucocorticoids during early development can have long-term effects upo...  相似文献   

10.
Repeated exposure to elevated levels of glucocorticoids during development can have long‐term detrimental effects on survival and fitness, potentially associated with increased telomere attrition. Nestling birds are regularly handled for ecological research, yet few authors have considered the potential for handling‐induced stress to influence hormonally mediated phenotypic development or bias interpretations of subsequent focal measurements. We experimentally manipulated the handling experience of the semi‐precocial nestlings of European Storm Petrel Hydrobates pelagicus to simulate handling in a typical field study and examined cumulative effects on physiology and condition in late postnatal development. Neither baseline corticosterone (the primary glucocorticoid in birds), telomere length nor body condition varied with the number of handling episodes. The absence of a response could be explained if Storm Petrels did not perceive handling to be stressful or if there is dissociation of the hypothalamic–pituitary–adrenal axis from stressful stimuli in early life. Eliciting a response to a stressor may be maladaptive for cavity‐dwelling young that are unable to escape or defend themselves. Furthermore, avoiding elevated overall glucocorticoid exposure may be particularly important in a long‐lived species, in which accelerated early‐life telomere erosion could impact negatively upon longevity. We propose that the level of colony‐wide disturbance induced by investigator handling of young could be important in underlining species‐specific responses. Storm Petrel nestlings appear unresponsive to investigator handling within the limits of handling in a typical field study and handling at this level should not bias physiological and morphological measurements.  相似文献   

11.
《Epigenetics》2013,8(6):816-822
“Fetal programming” is a term used to describe how early-life experience influences fetal development and later disease risk. In humans, prenatal stress-induced fetal programming is associated with increased risk of preterm birth, and a heightened risk of metabolic and neurological diseases later in life. A critical determinant of this is the regulation of fetal exposure to glucocorticoids by the placenta. Glucocorticoids are the mediators through which maternal stress influences fetal development. Excessive fetal glucocorticoid exposure during pregnancy results in low birth weight and abnormalities in a number of tissues. The amount of fetal exposure to maternal glucocorticoids depends on the expression of HSD11B2, an enzyme predominantly produced by the syncytiotrophoblast in the placenta. This protects the fetus by converting active glucocorticoids into inactive forms. In this review we examine recent findings regarding placental HSD11B2 that suggest that its epigenetic regulation may mechanistically link maternal stress and long-term health consequences in affected offspring.  相似文献   

12.
13.
In order to investigate the mechanism through which glucocorticoids downregulate the number of their own receptors in the AtT-20 cell, the effect of glucocorticoids on cell protein metabolism was studied. Glucocorticoids were found to inhibit cellular protein accumulation when included in long-term cultures. The concentrations of agonists that cause a mid-maximal effect are similar to those needed to half-saturate the glucocorticoid receptor, suggesting that the growth-inhibiting effect is receptor-mediated. Two-dimensional electrophoresis of cytosolic extracts of treated and control cells suggested that the effect reflected a general suppression of overall protein accumulation rather than a selective effect on certain classes. Comparison of the protein to DNA ratio of control and dexamethasone-treated cells showed that the latter have higher ratios suggesting that cell composition may be altered by agonists. However, time-course studies of this effect indicated that this is basically an expression of a glucocorticoid effect on cell growth rather than a selective effect on protein metabolism. It is concluded that glucocorticoids inhibit overall AtT-20 cell growth and that this, in turn, manifests itself as a decrease in the rate of protein accumulation. It is suggested that this change in protein metabolism may be a minor component in the mechanism through which glucocorticoids decrease AtT-20 cell ACTH secretion and glucocorticoid receptor number.  相似文献   

14.
Inhibition of T cell-mediated cytotoxicity by anti-inflammatory steroids   总被引:3,自引:0,他引:3  
We have tested the capacity of glucocorticoids to modulate the effector function of splenic cytotoxic T lymphocytes (CTL) obtained after i.p. immunization with allogeneic cells. Although acute exposure to glucocorticoids did not inhibit the activity of freshly obtained splenic CTL, preincubation of these CTL for several hours with subnanomolar concentrations of several different glucocorticoids caused marked inhibition. The relative inhibitory potency of the steroids tested correlated with their reported activity both in glucocorticoid receptor binding assays and in assays of anti-inflammatory potency in man. The inhibitory effects of low concentrations (10(-10) M to 10(-9) M) of dexamethasone were reversed by human or mouse interleukin 2 (IL 2)-containing supernatants, but were not reversed by IL 1-containing supernatants. The inhibitory effects of higher concentrations (10(-8) M to 10(-7) M) of dexamethasone could not be reversed even by very high doses of mouse IL 2. In contrast to previous reports of minimal direct glucocorticoid effects on CTL activity, the present results suggest that after preincubation, splenic CTL from in vivo-immune mice are sensitive to inhibition by glucocorticoids, and that the glucocorticoids may act both indirectly (on IL 2 production) and directly on the CTL.  相似文献   

15.
Most sympathetic neurons contain one or more neuropeptides in addition to catecholamines. Although the regulation of catecholamines has been studied extensively, comparatively little is known about the regulation of neuropeptides. Since glucocorticoids and preganglionic innervation regulate catecholaminergic properties in chromaffin cells, we examined the effects of these factors on a co-localized neuropeptide, leucine enkephalin (L-Enk), in adult rat sympathetic neurons in vivo. Lowered serum glucocorticoid levels as a consequence of bilateral adrenalectomy resulted in a reduction of ganglionic L-Enk content that was reversed by exposure of adrenalectomized animals to the synthetic glucocorticoid, dexamethasone. Surgical denervation of the SCG eliminated L-Enk-IR preganglionic fibers and caused a dramatic increase in the number of L-Enk-IR neurons. Inhibition of the enkephalinergic component of the preganglionic innervation by chronic exposure to the opiate receptor antagonist naloxone increases the number of L-Enk-IR cell bodies and total ganglionic L-Enk content. None of the experimental manipulations noticeably altered the number or distribution of NPY-IR neurons, suggesting that the effects of glucocorticoids and the innervation on ganglionic L-Enk levels were specific and not simply an alteration of the biosynthetic state of the cells. These results demonstrate that circulating glucocorticoids and the preganglionic innervation regulate L-Enk levels in sympathetic neurons. Since both glucocorticoid levels and preganglionic activity are known to be altered by stressful stimuli, acute regulation of sympathetic L-Enk levels may constitute an important component of the autonomic response to stress. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Maternal stress during gestation has the potential to affect offspring development via changes in maternal physiology, such as increases in circulating levels of glucocorticoid hormones that are typical after exposure to a stressor. While the effects of elevated maternal glucocorticoids on offspring phenotype (i.e., “glucocorticoid‐mediated maternal effects”) have been relatively well established in laboratory studies, it remains poorly understood how strong and consistent such effects are in natural populations. Using a meta‐analysis of studies of wild mammals, birds, and reptiles, we investigate the evidence for effects of elevated maternal glucocorticoids on offspring phenotype and investigate key moderators that might influence the strength and direction of these effects. In particular, we investigate the potential importance of reproductive mode (viviparity vs. oviparity). We show that glucocorticoid‐mediated maternal effects are stronger, and likely more deleterious, in mammals and viviparous squamate reptiles compared with birds, turtles, and oviparous squamates. No other moderators (timing and type of manipulation, age at offspring measurement, or type of trait measured) were significant predictors of the strength or direction of the phenotypic effects on offspring. These results provide evidence that the evolution of a prolonged physiological association between embryo and mother sets the stage for maladaptive, or adaptive, prenatal stress effects in vertebrates driven by glucocorticoid elevation.  相似文献   

17.
18.
Glucocorticoids are the main product of the adrenal cortex and participate in multiple cell functions as immunosupressors and modulators of neural function. Within the brain, glucocorticoid activity is mediated by high-affinity mineralocorticoid and low-affinity glucocorticoid receptors. Among brain cells, hippocampal cells are rich in glucocorticoid receptors where they regulate excitability and morphology. Also, elevated glucocorticoid levels suppress hippocampal neurogenesis in adults. The pineal neuroindole, melatonin, reduces the affinity of glucocorticoid receptors in rat brain and prevents glucocorticoid-induced apoptosis. Here, the ability of melatonin to prevent glucocorticoid-induced cell death in hippocampal HT22 cells was investigated in the presence of neurotoxins. Results showed that glucocorticoids reduce cellular growth and also enhance sensitivity to neurotoxins. We found a G(1) cell cycle arrest mediated by an increase of cyclin/cyclin-dependent kinase inhibitor p21(WAF1/CIP1) protein after dexamethasone treatment and incremental change in amyloid beta protein and glutamate toxicity. Melatonin prevents glucocorticoids inhibition of cell proliferation and reduces the toxicity caused by glucocorticoids when cells were treated with dexamethasone in combination with neurotoxins. Although, melatonin does not reduce glucocorticoid receptor mRNA or protein levels, it decreases receptor translocation to nuclei in these cells.  相似文献   

19.
Female macaques were tested under two different psychologically stressful situations in which plasma ACTH and glucocorticoid concentrations were measured. In the first, animals were operantly trained to enter a small transport cage over a four-week period, and plasma ACTH and glucocorticoids were measured in response to brief confinement in the cage before and after training. ACTH values were significantly lower in the pre-test (stress) condition when compared to those for the post-test, whereas the opposite result was found for glucocorticoid values. In the second experiment, blood samples were collected before and one hour after exposure to more acute and severe stress (restraint, venipuncture, handcapture, transport). Both ACTH and glucocorticoid values were significantly elevated from baseline at the post-test sample. The differential relationship between the two hormones among the two experiments was likely the result of the specific timing and magnitude of the stress imposed by each test situation.  相似文献   

20.
Our laboratory has shown that glucocorticoids can inhibit apoptosis in rat hepatoma cells; however, the mechanisms are incompletely understood. To address this issue we sought to determine if glucocorticoid inhibition is effective when death is induced by stimuli that more selectively activate either the intrinsic (UV-C) or extrinsic (FasL) apoptotic pathways. Using flow cytometric analysis, we show that pretreatment of HTC cells with dexamethasone (Dex) inhibits UV-C- but not FasL-induced apoptosis. This inhibition requires Dex pretreatment and can be abrogated by the glucocorticoid antagonist RU486 indicating glucocorticoid receptor-mediated action. Dex increases anti-apoptotic Bcl-x(L) at both mRNA and protein levels. The Bcl-x(L) protein level remains elevated even after apoptosis induction with either UV-C or FasL although only UV-C-induced cell death is inhibited. Repression of Bcl-x(L) protein with siRNA abrogates the anti-apoptotic effect of glucocorticoids. Together these data provide direct evidence that Bcl-x(L) mediates glucocorticoid inhibition of UV-C induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号