首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

2.
Abstract: An analogue of colchicine,β-lumicolchicine, does not bind tubulin or disrupt microtubules. However, this compound is not pharmacologically completely inactive. β-Lumicolchicine was found to competitively inhibit [3H]flunitrazepam binding and to enhance muscimol-stimulated 36Cr-uptake in mouse cerebral cortical microsacs. It also markedly potentiated GABA responses in Xenopusoocytes expressing human α1β2γ2S, but not α1β2, GABAA receptor subunits; this potentiation was reversed by the benzodiazepine receptor antagonist flumazenil. These results strongly suggest a direct effect of β-Lumicolchicine on the GABAA receptor/chloride channel complex and caution that it possesses pharmacological effects, despite its inability to disrupt microtubules. Furthermore, β-Lumicolchicine is structurally unrelated to benzodiazepines or quinolines and may provide a novel approach to the synthesis of ligands for this receptor.  相似文献   

3.
Extracts from Glycyrrhiza are traditionally used for the treatment of insomnia and anxiety. Glabridin is one of the main flavonoid compounds from Glycyrrhiza glabra and displays a broad range of biological properties. In the present work, we investigated the effect of glabridin on GABAA receptors. For this purpose, we employed the two-electrode voltage-clamp technique on Xenopus laevis oocytes expressing recombinant GABAA receptors. Through this approach, we observed that glabridin presents a strong potentiating effect on GABAA α1β(1?3)γ2 receptors. The potentiation was slightly dependent on the β subunit and was most pronounced at the α1β2γ2 subunit combination, which forms the most abundant GABAA receptor in the CNS. Glabridin potentiated with an EC50 of 6.3±1.7 µM and decreased the EC50 of the receptor for GABA by approximately 12-fold. The potentiating effect of glabridin is flumazenil-insensitive and does not require the benzodiazepine binding site. Glabridin acts on the β subunit of GABAA receptors by a mechanism involving the M286 residue, which is a key amino acid at the binding site for general anesthetics, such as propofol and etomidate. Our results demonstrate that GABAA receptors are strongly potentiated by one of the main flavonoid compounds from Glycyrrhiza glabra and suggest that glabridin could contribute to the reported hypnotic effect of Glycyrrhiza extracts.  相似文献   

4.
We evaluated the effects of 6-methoxyflavanone and 6-methoxyflavone on wild-type α1/α2β2γ2L GABAA and ρ1 GABAC receptors and on mutant ρ1I307S, ρ1W328 M, ρ1I307S/W328 M GABAC receptors expressed in Xenopus oocytes using two-electrode voltage clamp and radioligand binding. 6-Methoxyflavanone and 6-methoxyflavone act as a flumazenil-insensitive positive allosteric modulator of GABA responses at human recombinant α1β2γ2L and α2β2γ2L GABAA receptors. However, unlike 6-methoxyflavone, 6-methoxyflavanone was relatively inactive at α1β2 GABAA receptors. 6-Methoxyflavanone inhibited [3H]-flunitrazepam binding to rat brain membranes. Both flavonoids were found to be inactive as modulators at ρ1, ρ1I307S and ρ1W328 M GABA receptors but acted as positive allosteric modulators of GABA at the benzodiazepine sensitive ρ1I307S/W328 M GABA receptors. This double mutant retains ρ1 properties of being insensitive to bicuculline and antagonised by TPMPA and THIP. Additionally, 6-methoxyflavanone was also a partial agonist at ρ1W328 M GABA receptors. The relative inactivity of 6-methoxyflavanone at α1β2 GABAA receptors and it’s partial agonist action at ρ1W328 M GABA receptors suggest that it exhibits a unique profile not matched by other flavonoids.  相似文献   

5.
BackgroundGamma-aminobutyric acid A (GABAA) receptors have been implicated in anxiety and epileptic disorders.Hypothesis/PurposeThis study aimed to investigate the effects of stigmasterol, a plant sterol (phytosterol) isolated from Artemisia indica Linn on neurological disorders.MethodsStigmasterol was evaluated on various recombinant GABAA receptor subtypes expressed in Xenopus laevis oocytes and its anxiolytic and anticonvulsant potential was assessed using the elevated plus maze (EPM), light-dark box (LDB) test, and pentylenetetrazole- (PTZ-) induced seizure paradigms. Furthermore, computational modeling of α2β2γ2L, α4β3δ, and α4β3 subtypes was performed to gain insights into the GABAergic mechanism of stigmasterol. For the first time, a model of GABAδ subtype was generated. Stigmasterol was targeted to all the binding sites (neurotransmitters, positive and negative modulator binding sites) of GABAA α2β2γ2L, α4β3, and α4β3δ complexes by in silico docking.ResultsStigmasterol enhanced GABA-induced currents at ternary α2β2γ2L, α4β3δ, and binary α4β3 GABAAR subtypes. The potentiation of GABA-induced currents at extrasynaptic α4β3δ was significantly higher compared to the binary α4β3 subtype, indicating that the δ subunit is important for efficacy. Stigmasterol was found to be a potent positive modulator of the extrasynaptic α4β3δ subtype, which was also confirmed by computational analysis. The computational analysis reveals that stigmasterol preferentially binds at the transmembrane region shared by positive modulators or a binding site constituted by the M2-M3 region of α4 and M1-M2 of β3 at α4β3δ complex. In in vivo studies, Stigmasterol (0.5–3.0 mg/kg, i.p.) exerted significant anxiolytic and anticonvulsant effects in an identical manner of allopregnanolone, indicating the involvement of a GABAergic mechanism.ConclusionTo our knowledge, this is the first study reporting the positive modulation of GABAA receptors, anxiolytic and anticonvulsant potential of stigmasterol. Thus, stigmasterol is considered to be a candidate steroidal drug for the treatment of neurological disorders due to its positive modulation of GABA receptors.  相似文献   

6.
Abstract: Expression of rat brain γ-aminobutyric acid type A (GABAA) receptors in Xenopus laevis oocytes can be achieved by injection of the oocytes with synaptosomes. This approach has now been applied to evaluate changes in the function of nigral GABAA receptors after degeneration of the striatonigral GABAergic pathway induced by the unilateral infusion of kainic acid into the rat striatum. Ten days after striatal injection, synaptosomal membranes were prepared from the substantia nigra and introduced into oocytes. Nigral GABAA receptors incorporated into the oocyte cell membrane were then characterized electrophysiologically under voltage-clamp conditions. The maximal amplitude of GABA-induced Cl? currents in oocytes injected with synaptosomes from denervated substantia nigra was twice that observed in oocytes injected with synaptosomes from control substantia nigra. The concentration of GABA required for the half-maximal response did not differ between the two groups of oocytes. In addition, the potentiation of GABA-induced currents by the benzodiazepine diazepam (1 µM) and the steroid derivative allopregnanolone (3 µM) was increased by ~65 and 60%, respectively, in oocytes injected with synaptosomes from denervated substantia nigra compared with those injected with control synaptosomes. The concentrations of diazepam and allopregnanolone giving half-maximal responses were not affected by denervation. In contrast, the inhibitory effects of the benzodiazepine receptor inverse agonists FG 7142 (10 µM) and 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylic acid ethyl ester (1 µM) were reduced by 48 and 38%, respectively, after denervation. These results indicate that the up-regulation of nigral GABAA receptors induced by degeneration of the striatonigral GABAergic pathway is associated with an increased efficacy of positive allosteric modulators, such as benzodiazepines and steroids, and with a reduced efficacy of negative allosteric modulators such as β-carbolines.  相似文献   

7.
Abstract

The experiments reported here were motivated by our interest to express in stably-transfected cells large amounts of recombinant rat GABAA receptors. For this, we developed an original two step selection strategy, in which the first step consisted of transfecting HEK 293 cells with rat GABAA receptor α and β subunits. G 418 resistant colonies isolated at this step were screened for [3H] muscimol binding to select for those that coexpressed α- and β-subunits. The best α and β subunit expressing colony was then supertransfected with a plasmid coding for the γ rat GABAA receptor subunit and a mutant DHFR gene. After a second round of selection, this time in presence of methotrexate, those colonies that coexpressed ternary αβγ GABAA receptor combinations were distinguished using [3H] flumazenil as a probe. This strategy was applied to the isolation of 3 GABAA receptor clones, α1β2γ2S, α1β2γ2S and α1β2γ2S, that expressed relatively high levels of these proteins. These 3 cell lines exhibited pharmacological and functional properties similar to cells transiently-transfected with equivalent subunit combinations. These cell lines therefore provide attractive models with which to evaluate the intrinsic activity and potency of compounds at recombinant GABAA receptor subtypes.  相似文献   

8.
Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na+ and L-type Ca2+ channels and GABAA receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its effects on gramicidin channel A appearance rate and lifetime in artificial lipid bilayers. In the present study, the pharmacological action of Triton-X 100 on GABAA receptors expressed in Xenopus laevis oocytes was examined. Triton-X 100 inhibited GABAA α1β3γ2S receptor currents in a noncompetitive, time- and voltage-dependent manner and increased the apparent rate and extent of desensitization at 10 μM, which is 30 fold below the critical micelle concentration. In addition, Triton X-100 induced picrotoxin-sensitive GABAA receptor currents and suppressed allosteric modulation by flunitrazepam at α1β3γ2S receptors. All effects were independent of the presence of a γ2S subunit in the GABAA receptor complex. The present study suggests that Triton X-100 may stabilize open and desensitized states of the GABAA receptor through changes in lipid bilayer elasticity.  相似文献   

9.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARα1β3γ2). There is strong evidence that the heteropentameric receptor contains two α1, two β3, and one γ2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either γ2β3α1β3α1 or γ2α1β3α1β3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the γ2β3α1β3α1 or γ2α1β3α1β3  arrangements. Only the γ2α1β3α1β3 arrangement satisfied three known criteria: (1) α1 His102 binds at the γ2 subunit interface in proximity to γ2 residues Thr142, Phe77, and Met130; (2) α1 residues 80-100 bind near γ2 residues 91-104; and (3) α1 residues 58-67 bind near the β3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

10.
To study the effects of bisphenol-A (BPA) known to have estrogenic actions, and its derivatives, 3,5-dimethylphenol (DMP) and p-t-butylphenol (TBP), on ionotropic γ-aminobutyric acid (GABA) receptors, GABAA receptors were expressed in Xenopus oocytes by injecting both poly(A)+RNA prepared from rat whole brain and cRNAs synthesized from cloned cDNAs of α1 and β1 subunit of the bovine receptors, and their electrical responses were measured by the voltage clamping method. BPA caused the potentiation and inhibition of the former receptor-responses, while it caused only inhibition of the latter ones. In the presence of low concentrations of GABA, DMP and TBP potentiated the responses of both receptors. DMP and TBP also increased the rate of decay of the response, possibly by desensitization of the receptors when GABA solution was continuously bath-applied. Diethyl terephthalate (DTP), which is also known to have estrogenic actions, had little effect on both the responses and the decay of both receptors.  相似文献   

11.
γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABAA receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABAA receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ~50 and ~52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABAA receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.  相似文献   

12.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

13.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

14.
GABAA receptors, the major mediators of fast inhibitory neuronal transmission, are heteropentameric glycoproteins assembled from a panel of subunits, usually including α and β subunits with or without a γ2 subunit. The α1β2γ2 receptor is the most abundant GABAA receptor in brain. Co-expression of γ2 with α1 and β2 subunits causes conformational changes, increases GABAA receptor channel conductance, and prolongs channel open times. We reported previously that glycosylation of the three β2 subunit glycosylation sites, N32, N104 and N173, was important for α1β2 receptor channel gating. Here, we examined the hypothesis that steric effects or conformational changes caused by γ2 subunit co-expression alter the glycosylation of partnering β2 subunits. We found that co-expression of γ2 subunits hindered processing of β2 subunit N104 N-glycans in HEK293T cells. This γ2 subunit-dependent effect was strong enough that a decrease of γ2 subunit expression in heterozygous GABRG2 knockout (γ2+/?) mice led to appreciable changes in the endoglycosidase H digestion pattern of neuronal β2 subunits. Interestingly, as measured by flow cytometry, γ2 subunit surface levels were decreased by mutating each of the β2 subunit glycosylation sites. The β2 subunit mutation N104Q also decreased GABA potency to evoke macroscopic currents and reduced conductance, mean open time and open probability of single channel currents. Collectively, our data suggested that γ2 subunits interacted with β2 subunit N-glycans and/or subdomains containing the glycosylation sites, and that γ2 subunit co-expression-dependent alterations in the processing of the β2 subunit N104 N-glycans were involved in altering the function of surface GABAA receptors.  相似文献   

15.
Delta (δ) subunit containing GABAA receptors are expressed extra‐synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with α6 subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABAA receptor pentamers by subunit concatenation. These receptors (composed of α6, β3 and δ subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one and to 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. α6‐β3‐α6/δ receptors showed a substantial response to GABA alone. Three receptors, β3‐α6‐δ/α6‐β3, α6‐β3‐α63‐δ and β3‐δ‐β36‐β3, were only uncovered in the combined presence of the neurosteroid 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one with GABA. All four receptors were activated by 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the δ subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the δ subunit can assume multiple positions in a receptor pentamer composed of α6, β3 and δ subunits.  相似文献   

16.
The barbiturate pentobarbital binds to γ-aminobutyric acid type A (GABAA) receptors, and this interaction plays an important role in the anesthetic action of this drug. Depending on its concentration, pentobarbital can potentiate (∼10-100 μM), activate (∼100-800 μM), or block (∼1-10 mM) the channel, but the mechanisms underlying these three distinct actions are poorly understood. To investigate the drug-induced structural rearrangements in the GABAA receptor, we labeled cysteine mutant receptors expressed in Xenopus oocytes with the sulfhydryl-reactive, environmentally sensitive fluorescent probe tetramethylrhodamine-6-maleimide (TMRM). We then used combined voltage clamp and fluorometry to monitor pentobarbital-induced channel activity and local protein movements simultaneously in real time. High concentrations of pentobarbital induced a decrease in TMRM fluorescence (FTMRM) of labels tethered to two residues in the extracellular domain (α1L127C and β2L125C) that have been shown previously to produce an increase in FTMRM in response to GABA. Label at β2K274C in the extracellular end of the M2 transmembrane helix reported a small but significant FTMRM increase during application of low modulating pentobarbital concentrations, and it showed a much greater FTMRM increase at higher concentrations. In contrast, GABA decreased FTMRM at this site. These results indicate that GABA and pentobarbital induce different structural rearrangements in the receptor, and thus activate the receptor by different mechanisms. Labels at α1L127C and β2K274C change their fluorescence by substantial amounts during channel blockade by pentobarbital. In contrast, picrotoxin blockade produces no change in FTMRM at these sites, and the pattern of FTMRM signals elicited by the antagonist SR95531 differs from that produced by other antagonists. Thus, with either channel block by antagonists or activation by agonists, the structural changes in the GABAA receptor protein differ during transitions that are functionally equivalent.  相似文献   

17.
Alcohols and inhaled anesthetics modulate GABAA receptor (GABAAR) function via putative binding sites within the transmembrane regions. The relative position of the amino acids lining these sites could be either inter‐ or intra‐subunit. We introduced cysteines in relevant TM locations and tested the proximity of cysteine pairs using oxidizing and reducing agents to induce or break disulfide bridges between cysteines, and thus change GABA‐mediated currents in wild‐type and mutant α1β2γ2 GABAARs expressed in Xenopus laevis oocytes. We tested for: (i) inter‐subunit cross‐linking: a cysteine located in α1TM1 [either α1(Q229C) or α1(L232C)] was paired with a cysteine in different positions of β2TM2 and TM3; (ii) intra‐subunit cross‐linking: a cysteine located either in β2TM1 [β2(T225C)] or in TM2 [β2(N265C)] was paired with a cysteine in different locations along β2TM3. Three inter‐subunit cysteine pairs and four intra‐subunits cross‐linked. In three intra‐subunit cysteine combinations, the alcohol effect was reduced by oxidizing agents, suggesting intra‐subunit alcohol binding. We conclude that the structure of the alcohol binding site changes during activation and that potentiation or inhibition by binding at inter‐ or intra‐subunit sites is determined by the specific receptor and ligand.

  相似文献   


18.
Abstract: It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (αxβyγ2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10?4M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (>200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the α3β2γ2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to α1βxγ2 and α2βxγ2 receptor combinations were observed, and weak effects (130% of control values) were detected using the α5β2γ2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an α1β2γ2 receptor combination was used. Given the heterogeneity of the GABAA/benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.  相似文献   

19.
A phytochemical investigation of the lipophilic extract of Hypericum lissophloeus (smoothbark St. John’s wort, Hypericaceae) was conducted, resulting in the isolation and identification of a new chromanone derivative: 5,7-dihydroxy-2,3-dimethyl-6-(3-methyl-but-2-enyl)-chroman-4-one (1). This compound was demonstrated to act as a potent stimulator of currents elicited by GABA in recombinant α1β2γ2 GABAA receptors, with a half-maximal potentiation observed at a concentration of about 4 μM and a maximal potentiation of >4000%. Significant potentiation was already evident at a concentration as low as 0.1 μM. Extent of potentiation strongly depends on the type of α subunit, the type of β subunit and the presence of the γ subunit.  相似文献   

20.
A dichloromethane extract of stems and roots of Pholidota chinensis (Orchidaceae) enhanced GABA-induced chloride currents (IGABA) by 132.75 ± 36.69% when tested at 100 μg/mL in a two-microelectrode voltage clamp assay, on Xenopus laevis oocytes expressing recombinant α1β2γ2S GABAA receptors. By means of an HPLC-based activity profiling approach, the three structurally related stilbenoids coelonin (1), batatasin III (2), and pholidotol D (3) were identified in the active fractions of the extract. Dihydrostilbene 2 enhanced IGABA by 1512.19 ± 176.47% at 300 μM, with an EC50 of 52.51 ± 16.96 μM, while compounds 1 and 3 showed much lower activity. The relevance of conformational flexibility for receptor modulation by stilbenoids was confirmed with a series of 13 commercially available stilbenes and their corresponding semisynthetic dihydro derivatives. Dihydrostilbenes showed higher activity in the oocyte assay than their corresponding stilbenes. The dihydro derivatives of tetramethoxy-piceatannol (12) and pterostilbene (20) were the most active among these derivatives, but they showed lower efficiencies than compound 2. Batatasin III (2) showed high efficiency but no significant subunit specificity when tested on the receptor subtypes α1β2γ2s, α2β2γ2s, α3β2γ2s, α4β2γ2s, α5β2γ2s, α1β1γ2s, and α1β3γ2s. Dihydrostilbenes represent a new scaffold for GABAA receptor modulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号