首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CXC chemokine receptor 4 expression and function in human astroglioma cells   总被引:7,自引:0,他引:7  
Chemokines constitute a superfamily of proteins that function as chemoattractants and activators of leukocytes. Astrocytes, the major glial cell type in the CNS, are a source of chemokines within the diseased brain. Specifically, we have shown that primary human astrocytes and human astroglioma cell lines produce the CXC chemokines IFN-gamma-inducible protein-10 and IL-8 and the CC chemokines monocyte chemoattractant protein-1 and RANTES in response to stimuli such as TNF-alpha, IL-1beta, and IFN-gamma. In this study, we investigated chemokine receptor expression and function on human astroglioma cells. Enhancement of CXC chemokine receptor 4 (CXCR4) mRNA expression was observed upon treatment with the cytokines TNF-alpha and IL-1beta. The peak of CXCR4 expression in response to TNF-alpha and IL-1beta was 8 and 4 h, respectively. CXCR4 protein expression was also enhanced upon treatment with TNF-alpha and IL-1beta (2- to 3-fold). To study the functional relevance of CXCR4 expression, stable astroglioma transfectants expressing high levels of CXCR4 were generated. Stimulation of cells with the ligand for CXCR4, stromal cell-derived factor-1alpha (SDF-1alpha), resulted in an elevation in intracellular Ca(2+) concentration and activation of the mitogen-activated protein kinase cascade, specifically, extracellular signal-regulated kinase 2 (ERK2) mitogen-activated protein kinase. Of most interest, SDF-1alpha treatment induced expression of the chemokines monocyte chemoattractant protein-1, IL-8, and IFN-gamma-inducible protein-10. SDF-1alpha-induced chemokine expression was abrogated upon inclusion of U0126, a pharmacological inhibitor of ERK1/2, indicating that the ERK signaling cascade is involved in this response. Collectively, these data suggest that CXCR4-mediated signaling pathways in astroglioma cells may be another mechanism for these cells to express chemokines involved in angiogenesis and inflammation.  相似文献   

2.
Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor superfamily originally shown to play an important role in adipocyte differentiation and glucose homeostasis, is now known to regulate inflammatory responses. Given the importance of endothelial cell (EC)-derived chemokines in regulating leukocyte function and trafficking, we studied the effects of PPARgamma ligands on the expression of chemokines induced in ECs by the Th1 cytokine IFN-gamma. Treatment of ECs with PPARgamma activators significantly inhibited IFN-gamma-induced mRNA and protein expression of the CXC chemokines IFN-inducible protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), whereas expression of the CC chemokine monocyte chemoattractant protein-1 was not altered. PPARgamma activators decreased IFN-inducible protein of 10 kDa promoter activity and inhibited protein binding to the two NF-kappaB sites but not to the IFN-stimulated response element ISRE site. Furthermore, PPARgamma ligands inhibited the release of chemotactic activity for CXC chemokine receptor 3 (CXCR3)-transfected lymphocytes from IFN-gamma-stimulated ECs. These data suggest that anti-diabetic PPARgamma activators might attenuate the recruitment of activated T cells at sites of Th1-mediated inflammation.  相似文献   

3.
Clostridium difficile has emerged as the important causative agent of antibiotics-associated pseudomembranous colitis; especially its toxin A is presumed to be responsible for the colitis. We examined the pathophysiological roles of IFN-gamma in toxin A-induced enteritis using IFN-gamma knockout (KO) mice. When toxin A of C. difficile was injected into the ileal loops of BALB/c wild-type (WT) mice, massive fluid secretion, disruption of intestinal epithelial structure, and massive neutrophil infiltration developed within 4 h after the injection. IFN-gamma protein was faintly detected in some CD3-positive lymphocytes in the lamina propria and submucosa of the ileum of untreated WT mice. On the contrary, at 2 and 4 h after toxin A injection, IFN-gamma protein was detected in infiltrating neutrophils and to a lesser degree in CD3-positive lymphocytes. In the ileum of WT mice, toxin A treatment markedly enhanced the gene expression of TNF-alpha, macrophage inflammatory protein-1alpha and -2, KC, and ICAM-1 >2 h after treatment. In contrast, the histopathological changes were marginal, without enhanced fluid secretion in the ileum of toxin A-treated IFN-gamma KO mice. Moreover, toxin A-induced gene expression of TNF-alpha, neutrophil chemotactic chemokines, and ICMA-1 was remarkably attenuated in IFN-gamma KO mice. Furthermore, pretreatment of WT mice with a neutralizing anti-IFN-gamma Ab prevented toxin A-induced enteritis. These observations indicate that IFN-gamma is the crucial mediator of toxin A-induced acute enteritis and suggest that IFN-gamma is an important molecular target for the control of C. difficile-associated pseudomembranous colitis.  相似文献   

4.
5.
The approximately 50 known chemokines are classified in distinct subfamilies: CXC, CC, CX3C, and C. Although the signaling of chemokines often is promiscuous, signaling events between members of these distinct chemokine classes are hardly observed. The only known exception so far is the murine CC chemokine ligand (CCL)21 (secondary lymphoid tissue chemokine, Exodus-2, 6Ckine), which binds and activates the murine CXC chemokine receptor CXCR3. However, this exception has not been found in humans. In this study, we provide evidence that human CCL21 is a functional ligand for endogenously expressed CXCR3 in human adult microglia. In absence of CCR7 expression, CCL21 induced chemotaxis of human microglia with efficiency similar to the CXCR3 ligands CXC chemokine ligand 9 (monokine induced by IFN-gamma) and CXC chemokine ligand 10 (IFN-gamma-inducible protein-10). Because human CCL21 did not show any effects in CXCR3-transfected HEK293 cells, it is indicated that CXCR3 signaling depends on the cellular background in which the CXCR3 is expressed.  相似文献   

6.
Human colonic epithelial cells express CXCR4, the sole cognate receptor for the chemokine stromal cell-derived factor (SDF)-1/CXC chemokine ligand (CXCL) 12. The aim of this study was to define the mechanism and functional consequences of signaling intestinal epithelial cells through the CXCR4 chemokine receptor. CXCR4, but not SDF-1/CXCL12, was constitutively expressed by T84, HT-29, HT-29/-18C1, and Caco-2 human colon epithelial cell lines. Studies using T84 cells showed that CXCR4 was G protein-coupled in intestinal epithelial cells. Moreover, stimulation of T84 cells with SDF-1/CXCL12 inhibited cAMP production in response to the adenylyl cyclase activator forskolin, and this inhibition was abrogated by either anti-CXCR4 antibody or receptor desensitization. Studies with pertussis toxin suggested that SDF-1/CXCL12 activated negative regulation of cAMP production through G(i)alpha subunits coupled to CXCR4. Consistent with the inhibition of forskolin-stimulated cAMP production, SDF-1/CXCL12 also inhibited forskolin-induced ion transport in voltage-clamped polarized T84 cells. Taken together, these data indicate that epithelial CXCR4 can transduce functional signals in human intestinal epithelial cells that modulate important cAMP-mediated cellular functions.  相似文献   

7.
Accumulating evidence suggests the neuropeptide substance P (SP) and its receptor neurokinin-1 receptor (NK-1R) play a pivotal role in the pathogenesis of acute pancreatitis (AP). However, the mechanisms remain unclear. The present study investigated whether chemokines as proinflammatory molecules are involved in SP-NK-1R-related pathogenesis of this condition. We observed temporally and spatially selective chemokine responses in secretagogue caerulein-induced AP in mice. CC chemokines monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein-1alpha (MIP-1alpha) and CXC chemokine MIP-2 were elevated after AP induction. Time-dependent, tissue-specific analysis of their mRNA and protein expression suggested that they are early mediators in the condition and mediate local as well as systemic inflammatory responses. In contrast, another CC chemokine regulated on activation, T cells expressed and secreted (RANTES) was only involved in local pancreatic inflammation at a later stage of the disease. Either prophylactic or therapeutic treatment with a potent selective NK-1R antagonist CP-96,345 significantly suppressed caerulein-induced increase in MCP-1, MIP-1alpha, and MIP-2 expression but had no apparent effect on RANTES expression. The suppression effect of CP-96,345 on MCP-1, MIP-1alpha, and MIP-2 expression was concordantly demonstrated by immunohistochemistry, which, additionally, suggested that chemokine immunoreactivity was localized to acinar cells and the infiltrating leukocytes in the pancreas and alveolar macrophages, epithelial cells, and endothelial cells in the lungs. Our data suggest that SP, probably by acting via NK-1R on various chemokine-secreting cells in the pancreas and lungs, stimulates the release of chemokines that aggravate local AP and the development of its systemic sequelae.  相似文献   

8.
Toll-like receptors (TLRs) are pattern recognition receptors that serve an important function in detecting pathogens and initiating inflammatory responses. Upon encounter with foreign Ag, dendritic cells (DCs) go through a maturation process characterized by an increase in surface expression of MHC class II and costimulatory molecules, which leads to initiation of an effective immune response in naive T cells. The innate immune response to bacterial flagellin is mediated by TLR5, which is expressed on human DCs. Therefore, we sought to investigate whether flagellin could induce DC maturation. Immature DCs were cultured in the absence or presence of flagellin and monitored for expression of cell surface maturation markers. Stimulation with flagellin induced increased surface expression of CD83, CD80, CD86, MHC class II, and the lymph node-homing chemokine receptor CCR7. Flagellin stimulated the expression of chemokines active on neutrophils (IL-8/CXC chemokine ligand (CXCL)8, GRO-alpha/CXCL1, GRO-beta/CXCL2, GRO-gamma/CXCL3), monocytes (monocyte chemoattractant protein-1/CC chemokine ligand (CCL)2), and immature DCs (macrophage-inflammatory protein-1 alpha/CCL3, macrophage-inflammatory protein-1 beta/CCL4), but not chemokines active on effector T cells (IFN-inducible protein-10 kDa/CXCL10, monokine induced by IFN-gamma/CXCL9, IFN-inducible T cell alpha chemoattractant/CXCL11). However, stimulating DCs with both flagellin and IFN-inducible protein-10 kDa, monokine induced by IFN-gamma, and IFN-inducible T cell alpha chemoattractant expression, whereas stimulation with IFN-beta or flagellin alone failed to induce these chemokines. In functional assays, flagellin-matured DCs displayed enhanced T cell stimulatory activity with a concomitant decrease in endocytic activity. Finally, DCs isolated from mouse spleens or bone marrows were shown to not express TLR5 and were not responsive to flagellin stimulation. These results demonstrate that flagellin can directly stimulate human but not murine DC maturation, providing an additional mechanism by which motile bacteria can initiate an acquired immune response.  相似文献   

9.
IL-4 has been shown to be involved in the accumulation of leukocytes, especially eosinophils, at sites of inflammation by acting on vascular endothelial cells. To identify novel molecules involved in the IL-4-dependent eosinophil extravasation, cDNA prepared from HUVEC stimulated with IL-4 was subjected to differential display analysis, which revealed a novel CC chemokine designated as eotaxin-3. The human eotaxin-3 gene has been localized to chromosome 7q11.2, unlike most other CC chemokine genes. The predicted mature protein of 71 aa showed 27-42% identity to other human CC chemokines. The recombinant protein induced a transient increase in the cytosolic Ca2+ concentration and in vitro chemotaxis on eosinophils. Furthermore, in cynomolgus monkeys, the accumulation of eosinophils was observed at the sites where the protein was injected. Eotaxin-3 inhibited the binding of 125I-eotaxin, but not 125I-macrophage inflammatory protein-1alpha, to eosinophils and acted on cell lines transfected with CCR-3, suggesting that eotaxin-3 recognized CCR-3. IL-13 as well as IL-4 up-regulated eotaxin-3 mRNA in HUVEC, whereas neither TNF-alpha, IL-1beta, IFN-gamma, nor TNF-alpha plus IFN-gamma did. The expression profile of eotaxin-3 is different from those of eotaxin, RANTES, and monocyte chemoattractant protein-4, which are potent eosinophil-selective chemoattractants and are induced by either TNF-alpha or TNF-alpha plus IFN-gamma. These results suggest that eotaxin-3 may contribute to the eosinophil accumulation in atopic diseases.  相似文献   

10.
Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (> 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.  相似文献   

11.
12.
We have previously shown that members of the ELR(+) CXC chemokine family, including IL-8; growth-related oncogenes alpha, beta, and gamma; granulocyte chemotactic protein 2; and epithelial neutrophil-activating protein-78, can mediate angiogenesis in the absence of preceding inflammation. To date, the receptor on endothelial cells responsible for chemotaxis and neovascularization mediated by these ELR(+) CXC chemokines has not been determined. Because all ELR(+) CXC chemokines bind to CXC chemokine receptor 2 (CXCR2), we hypothesized that CXCR2 is the putative receptor for ELR(+) CXC chemokine-mediated angiogenesis. To test this postulate, we first determined whether cultured human microvascular endothelial cells expressed CXCR2. CXCR2 was detected in human microvascular endothelial cells at the protein level by both Western blot analysis and immunohistochemistry using polyclonal Abs specific for human CXCR2. To determine whether CXCR2 played a functional role in angiogenesis, we determined whether this receptor was involved in endothelial cell chemotaxis. We found that microvascular endothelial cell chemotaxis in response to ELR(+) CXC chemokines was inhibited by anti-CXCR2 Abs. In addition, endothelial cell chemotaxis in response to ELR(+) CXC chemokines was sensitive to pertussis toxin, suggesting a role for G protein-linked receptor mechanisms in this biological response. The importance of CXCR2 in mediating ELR(+) CXC chemokine-induced angiogenesis in vivo was also demonstrated by the lack of angiogenic activity induced by ELR(+) CXC chemokines in the presence of neutralizing Abs to CXCR2 in the rat corneal micropocket assay, or in the corneas of CXCR2(-/-) mice. We thus conclude that CXCR2 is the receptor responsible for ELR(+) CXC chemokine-mediated angiogenesis.  相似文献   

13.
Corticotropin-releasing hormone (CRH) and urocortins (Ucn) bind with various affinities to two G-protein-coupled receptors, CRHR1 and CRHR2, which are expressed in brain and in peripheral tissues, including immune cells. CRHR2-deficient mice display anxiety-like behavior, hypersensitivity to stress, altered feeding behavior and metabolism, and cardiovascular abnormalities. However, the phenotype of these mice in inflammatory responses has not been determined. In the present study we found that compared with wild-type CRHR2-null mice developed substantially reduced intestinal inflammation and had lower intestinal mRNA expression of the potent chemoattractants keratinocyte chemokine and monocyte chemoattractant protein 1 following intraluminal exposure to Clostridium difficile toxin A, a potent enterotoxin that mediates antibiotic-associated diarrhea and colitis in humans. This effect was recapitulated by administration of astressin 2B, a selective CRHR2 antagonist, before toxin A exposure. Moreover, Ab array analysis revealed reduced expression of several inflammatory chemokines, including keratinocyte chemokine and monocyte chemoattractant protein 1 in toxin A-exposed mice pretreated with astressin 2B. Real-time RT-PCR of wild-type mouse intestine showed that only UcnII, but not other Ucn, was significantly up-regulated by ileal administration of toxin A at 4 h compared with buffer exposure. We also found that human colonic epithelial HT-29 cells express CRHR2alpha mRNA, whereas expression of beta and gamma spliced variants was minimal. Moreover, treatment of HT-29 cells with UcnII, which binds exclusively to CRHR2, stimulated expression of IL-8 and monocyte chemoattractant protein 1. Taken together, these results provide direct evidence that CRHR2 mediates intestinal inflammatory responses via release of proinflammatory mediators at the colonocyte level.  相似文献   

14.
The epithelial cell response to rotavirus infection.   总被引:14,自引:0,他引:14  
Rotavirus is the most important worldwide cause of severe gastroenteritis in infants and young children. Intestinal epithelial cells are the principal targets of rotavirus infection, but the response of enterocytes to rotavirus infection is largely unknown. We determined that rotavirus infection of HT-29 intestinal epithelial cells results in prompt activation of NF-kappaB (<2 h), STAT1, and ISG F3 (3 h). Genetically inactivated rotavirus and virus-like particles assembled from baculovirus-expressed viral proteins also activated NF-kappaB. Rotavirus infection of HT-29 cells induced mRNA for several C-C and C-X-C chemokines as well as IFNs and GM-CSF. Mice infected with simian rotavirus or murine rotavirus responded similarly with the enhanced expression of a profile of C-C and C-X-C chemokines. The rotavirus-stimulated increase in chemokine mRNA was undiminished in mice lacking mast cells or lymphocytes. Rotavirus induced chemokines only in mice <15 days of age despite documented infection in older mice. Macrophage inflammatory protein-1beta and IFN-stimulated protein 10 mRNA responses occurred, but were reduced in p50-/- mice. Macrophage inflammatory protein-1beta expression during rotavirus infection localized to the intestinal epithelial cell in murine intestine. These results show that the intestinal epithelial cell is an active component of the host response to rotavirus infection.  相似文献   

15.
IL-13 has been shown to exert potent anti-inflammatory properties. In this study, we elucidated the functional role of endogenous IL-13 in a murine model of septic peritonitis induced by cecal ligation and puncture (CLP). Initial studies demonstrated that the level of IL-13 increased in tissues including liver, lung, and kidney, whereas no considerable increase was found in either peritoneal fluid or serum after CLP. Immunohistochemically, IL-13-positive cells were Kupffer cells in liver, alveolar macrophages in lung, and epithelial cells of urinary tubules in kidney. IL-13 blockade with anti-IL-13 Abs significantly decreased the survival rate of mice after CLP from 53% to 14% on day 7 compared with control. To determine the potential mechanisms whereby IL-13 exerted a protective role in this model, the effects of anti-IL-13 Abs on both local and systemic inflammation were investigated. Administration of anti-IL-13 Abs did not alter the leukocyte infiltration and bacterial load in the peritoneum after CLP but dramatically increased the neutrophil influx in tissues after CLP, an effect that was accompanied by significant increases in the serum levels of aspartate transaminase, alanine transaminase, blood urea nitrogen, and creatinine. Tissue injury caused by IL-13 blockade was associated with increases in mRNA and the protein levels of CXC chemokines macrophage inflammatory protein-2 and KC as well as the CC chemokine macrophage inflammatory protein-1alpha and the proinflammatory cytokine TNF-alpha. Collectively, these results suggest that endogenous IL-13 protected mice from CLP-induced lethality by modulating inflammatory responses via suppression of overzealous production of inflammatory cytokines/chemokines in tissues.  相似文献   

16.
17.
Airway epithelial cells are a rich source of eosinophil-selective C-C chemokines. We investigated whether cytokines and the topical glucocorticoid budesonide differentially regulate RANTES, monocyte chemoattractant protein-4 (MCP-4), and eotaxin mRNA and protein expression in the human bronchial epithelial cell line BEAS-2B and in primary human bronchial epithelial cells by Northern blot analysis and ELISAs. Eotaxin and MCP-4 mRNA expression induced by TNF-alpha alone or in combination with IFN-gamma was near-maximal after 1 h, peaked at 4 and 8 h, respectively, remained unchanged up to 24 h, and was protein synthesis independent. In contrast, RANTES mRNA was detectable only after 2 h and slowly increased to a peak at 24 h, and was protein synthesis dependent. Induction of eotaxin and MCP-4 mRNA showed a 10- to 100-fold greater sensitivity to TNF-alpha compared with RANTES mRNA. IL-4 and IFN-gamma had selective effects on chemokine expression; IL-4 selectively up-regulated the expression of eotaxin and MCP-4 and potentiated TNF-alpha-induced eotaxin, while IFN-gamma markedly potentiated only the TNF-alpha-induced expression of RANTES. Although budesonide inhibited the expression of chemokine mRNA to a variable extent, it effectively inhibited production of eotaxin and RANTES protein. Budesonide inhibited both RANTES- and eotaxin promoter-driven reporter gene activity. Budesonide also selectively accelerated the decay of eotaxin and MCP-4 mRNA. These results point to IL-4 as a possible mediator by which Th2 cells may induce selective production of C-C chemokines from epithelium and indicate that glucocorticoid inhibit chemokine expression through multiple mechanisms of action.  相似文献   

18.
19.
Leukocyte infiltration during acute and chronic inflammation is regulated by exogenous and endogenous factors, including cytokines, chemokines and proteases. Stimulation of fibroblasts and human microvascular endothelial cells with the inflammatory cytokines interleukin-1beta (IL-1beta) or tumour necrosis factor alpha (TNF-alpha) combined with either interferon-alpha (IFN-alpha), IFN-beta or IFN-gamma resulted in a synergistic induction of the CXC chemokine CXCL10, but not of the neutrophil chemoattractant CXCL8. In contrast, simultaneous stimulation with different IFN types did not result in a synergistic CXCL10 protein induction. Purification of natural CXCL10 from the conditioned medium of fibroblasts led to the isolation of CD26/dipeptidyl peptidase IV-processed CXCL10 missing two NH2-terminal residues. In contrast to intact CXCL10, NH2-terminally truncated CXCL10(3-77) did not induce extracellular signal-regulated kinase 1/2 or Akt/protein kinase B phosphorylation in CXC chemokine receptor 3-transfected cells. Together with the expression of CXCL10, the expression of membrane-bound CD26/dipeptidyl peptidase IV was also upregulated in fibroblasts by IFN-gamma, by IFN-gamma plus IL-1beta or by IFN-gamma plus TNF-alpha. This provides a negative feedback for CXCL10-dependent chemotaxis of activated T cells and natural killer cells. Since TNF-alpha and IL-1beta are implicated in arthritis, synovial concentrations of CXCL8 and CXCL10 were compared in patients suffering from crystal arthritis, ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. All three groups of autoimmune arthritis patients (ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis) had significantly increased synovial CXCL10 levels compared with crystal arthritis patients. In contrast, compared with crystal arthritis, only rheumatoid arthritis patients, and not ankylosing spondylitis or psoriatic arthritis patients, had significantly higher synovial CXCL8 concentrations. Synovial concentrations of the neutrophil chemoattractant CXCL8 may therefore be useful to discriminate between autoimmune arthritis types.  相似文献   

20.
Intracerebral infection of mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a chronic demyelinating disease with clinical and histological similarities with the human demyelinating disease multiple sclerosis (MS). Following MHV infection, chemokines including CXC chemokine ligand (CXCL)10 (IFN inducible protein 10 kDa), CXCL9 (monokine induced by IFN-gamma), and CC chemokine ligand 5 (RANTES) are expressed during both acute and chronic stages of disease suggesting a role for these molecules in disease exacerbation. Previous studies have shown that during the acute phase of infection, T lymphocytes are recruited into the CNS by the chemokines CXCL10 and CXCL9. In the present study, MHV-infected mice with established demyelination were treated with antisera against these two chemokines, and disease severity was assessed. Treatment with anti-CXCL10 reduced CD4+ T lymphocyte and macrophage invasion, diminished expression of IFN-gamma and CC chemokine ligand 5, inhibited progression of demyelination, and increased remyelination. Anti-CXCL10 treatment also resulted in an impediment of clinical disease progression that was characterized by a dramatic improvement in neurological function. Treatment with antisera against CXCL9 was without effect, demonstrating a critical role for CXCL10 in inflammatory demyelination in this model. These findings document a novel therapeutic strategy using Ab-mediated neutralization of a key chemokine as a possible treatment for chronic human inflammatory demyelinating diseases such as MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号