首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Bone cells subjected to mechanical loading by fluid shear stress undergo significant architectural and biochemical changes. The models of shear stress used to analyze the effects of loading bone cells in vitro include both oscillatory and unidirectional fluid shear profiles. Although the fluid flow profile experienced by cells within bone is most likely oscillatory in nature, to date there have been few direct comparisons of how bone cells respond to these two fluid flow profiles. In this study we evaluated morphologic and biochemical responses to a time course of unidirectional and oscillatory fluid flow in two commonly used bone cell lines, MC3T3-E1 osteoblasts and MLO-Y4 osteocytes. We determined that stress fibers formed and aligned within osteoblasts after 1 h of unidirectional fluid flow, but this response was not observed until greater than 5 h of oscillatory fluid flow. Despite the delay in stress fiber formation, oscillatory and unidirectional fluid flow profiles elicited similar temporal effects on the induction of both cyclooxygenase-2 (Cox-2) and osteopontin protein expression in osteoblasts. Interestingly, MLO-Y4 osteocytes formed organized stress fibers after exposure to 24 h of unidirectional shear stress, while the number of dendritic processes per cell increased along with Cox-2 protein levels after 24 h of oscillatory shear stress. Despite these differences, both flow profiles significantly altered osteopontin levels in MLO-Y4 osteocytes. Together these results demonstrate that the profile of fluid shear can induce significantly different responses from osteoblasts and osteocytes.  相似文献   

2.
Loading-induced flow of interstitial fluid through the lacuno-canalicular network is a likely signal for bone cell adaptive responses. However, the nature of the stimulus that activates the cell is debated. Candidate stimuli include wall shear stress, streaming potentials, and chemotransport. We have addressed the nature of the flow-derived cell stimulus by comparing variations in fluid transport with variations in wall shear stress, using nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production as a parameter of bone cell activation. Adult mouse long bone cell cultures were treated for 15min with or without pulsating fluid flow using the following regimes: Low PFF, mean flow rate 0.20 cm(3)/s, 3 Hz, shear stress 0.4+/-0.12 Pa; Medium PFF, 0.33 cm(3)/s, 5 Hz, 0.6+/-0.27 Pa; and High PFF, 0.63 cm(3)/s, 9Hz, 1.2+/-0.37 Pa. In some Low PFF experiments, 2.8% neutral dextran (mol. wt. 4.98x10(4)) was added to the flow medium to increase the viscosity, thereby increasing the wall shear stress 3-fold to a level similar of the High PFF stimulus, but without affecting streaming potentials or chemotransport. NO and PGE(2) production were stimulated by Low, Medium, and High PFF in a dose-dependent manner. Application of Low PFF using dextran-supplemented medium, enhanced both the NO and PGE(2) response by 3-fold, to a level mimicking the response to High PFF at normal viscosity. These results show that the production of NO and PGE(2) by bone cells can be enhanced in a dose-dependent manner by fluid flow of increasing wall shear stress. Therefore, the stimulus leading to NO and PGE(2) production is the flow-derived shear stress, and not streaming potentials or chemotransport.  相似文献   

3.
Maintenance of optimal bone physiology requires the coordinated activity of osteoclasts that resorb old bone and osteoblasts that deposit new bone. Mechanical loading of bone and the resulting movement of interstitial fluid within the spaces surrounding bone cells is thought to play a key role is maintaining optimal bone mass. One way in which fluid movement may promote bone formation is by enhancing osteoblast survival. We have shown previously that application of fluid flow to osteoblasts in vitro confers a protective effect by inhibiting osteoblast apoptosis (Pavalko et al., 2003, J. Cell Physiol., 194: 194-205). To investigate the cellular mechanisms that regulate the response of osteoblasts to fluid shear stress, we have examined the possible interaction between fluid flow and growth factors in MC3T3-E1 osteoblast-like cells. We found that insulin-like growth factor-I (IGF-I) was significantly more effective at preventing TNF-$\alpha$-induced apoptosis when cells were first subjected to mechanical loading by exposure to either unidirectional or oscillatory fluid flow compared to cells that were maintained in static culture. Additionally, downstream signaling in response to treatment with IGF-I, including ERK and Akt activation, was enhanced in cells that were subjected to fluid flow, compared to cells maintained in static culture. Furthermore, we found that PKC$\zeta$ activity is essential for fluid shear stress sensitization of IGF-IR, since a specific inhibitor of PCK$\zeta$ function blocked the flow-enhanced IGF-I-activated Akt and ERK phosphorylation. Together, our results suggest that fluid shear stress may regulate IGF-I signaling in osteoblasts in a PKC-$\zeta$-dependent manner.  相似文献   

4.
Maintenance of optimal bone physiology requires the coordinated activity of osteoclasts that resorb old bone and osteoblasts that deposit new bone. Mechanical loading of bone and the resulting movement of interstitial fluid within the spaces surrounding bone cells is thought to play a key role is maintaining optimal bone mass. One way in which fluid movement may promote bone formation is by enhancing osteoblast survival. We have shown previously that application of fluid flow to osteoblasts in vitro confers a protective effect by inhibiting osteoblast apoptosis (Pavalko et al., 2003, J. Cell Physiol., 194: 194-205). To investigate the cellular mechanisms that regulate the response of osteoblasts to fluid shear stress, we have examined the possible interaction between fluid flow and growth factors in MC3T3-E1 osteoblast-like cells. We found that insulin-like growth factor-I (IGF-I) was significantly more effective at preventing TNF-alpha-induced apoptosis when cells were first subjected to mechanical loading by exposure to either unidirectional or oscillatory fluid flow compared to cells that were maintained in static culture. Additionally, downstream signaling in response to treatment with IGF-I, including ERK and Akt activation, was enhanced in cells that were subjected to fluid flow, compared to cells maintained in static culture. Furthermore, we found that PKC activity is essential for fluid shear stress sensitization of IGF-IR, since a specific inhibitor of PCKzeta function blocked the flow-enhanced IGF-I-activated Akt and ERK phosphorylation. Together, our results suggest that fluid shear stress may regulate IGF-I signaling in osteoblasts in a PKC-zeta-dependent manner.  相似文献   

5.
Microfluidics is a convenient platform to study the influences of fluid shear stress on calcium dynamics. Fluidic shear stress has been proven to affect bone cell functions and remodelling. We have developed a microfluidic system which can generate four shear flows in one device as a means to study cytosolic calcium concentration ([Ca2+]c) dynamics of osteoblasts. Four shear forces were achieved by having four cell culture chambers with different widths while resistance correction channels compensated for the overall resistance to allow equal flow distribution towards the chambers. Computational simulation of the local shear stress distribution highlighted the preferred section in the cell chamber to measure the calcium dynamics. Osteoblasts showed an [Ca2+]c increment proportional to the intensity of the shear stress from 0.03 to 0.30 Pa. A delay in response was observed with an activation threshold between 0.03 and 0.06 Pa. With computational modelling, our microfluidic device can offer controllable multishear stresses and perform quantitative comparisons of shear stress-induced intensity change of calcium in osteoblasts.  相似文献   

6.
Cultured osteoblasts express three major types of cytoskeleton: actin microfilaments, microtubules, and intermediate filaments. The cytoskeletal network is thought to play an important role in the transmission and conversion of a mechanical stimulus into a biochemical response. To examine a role for the three different cytoskeletal networks in fluid shear stress-induced signaling in osteoblasts, we individually disrupted actin microfilaments, micro-tubules, and intermediate filaments in MC3T3-E1 osteoblasts with multiple pharmacological agents. We subjected these cells to 90 min of laminar fluid shear stress (10 dyn/cm(2)) and compared the PGE(2) and PGI(2) release and induction of cyclooxygenase-2 protein to control cells with intact cytoskeletons. Disruption of actin microfilaments, microtubules, or intermediate filaments in MC3T3-E1 cells did not prevent a significant fluid shear stress-induced release of PGE(2) or PGI(2). Furthermore, disruption of actin microfilaments or microtubules did not prevent a significant fluid shear stress-induced increase in cyclooxygenase-2 protein levels. Disruption of intermediate filaments with acrylamide did prevent the fluid shear stress-induced increase in cyclooxygenase-2 but also prevented a PGE(2)-induced increase in cyclooxygenase-2. Thus none of the three major cytoskeletal networks are required for fluid shear stress-induced prostaglandin release. Furthermore, although neither actin microfilaments nor microtubules are required for fluid shear stress-induced increase in cyclooxygenase-2 levels, the role of intermediate filaments in regulation of cyclooxygenase-2 expression is less clear.  相似文献   

7.
Fluid flowing through the bone porosity might be a primary stimulus for functional adaptation of bone. Osteoblasts, and osteocytes in particular, respond to fluid flow in vitro with enhanced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) release; both of these signaling molecules mediate mechanically-induced bone formation. Because the cell cytoskeleton is involved in signal transduction, we hypothesized that the pulsatile fluid flow-induced release of NO and PGE(2) in both osteoblastic and osteocytic cells involves the actin and microtubule cytoskeleton. In testing this hypothesis we found that fluid flow-induced NO response in osteoblasts was accompanied by parallel alignment of stress fibers, whereas PGE(2) response was related to fluid flow stimulation of focal adhesions formed after cytoskeletal disruption. Fluid flow-induced PGE(2) response in osteocytes was inhibited by cytoskeletal disruption, whereas in osteoblasts it was enhanced. These opposite PGE(2) responses are likely related to differences in cytoskeletal composition (osteocyte structure was more dependent on actin), but may occur via cytoskeletal modulation of shear/stretch-sensitive ion channels that are known to be dominant in osteocyte (and not osteoblast) response to mechanical loading.  相似文献   

8.
Oocyte maturation (meiosis reinitiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Oocytes of Evasterias troschelii contain 0.43 pmole cyclic AMP/mg protein and 0.47 pmole cyclic GMP/mg protein. Upon stimulation by 1-MeAde the oocytes undergo a moderate (10-30%) decrease in their cAMP concentration. The concentration of cGMP remains unaltered. Oocytes treated with forskolin, an activator of adenylate cyclase, increase their cAMP concentration over 35-fold, up to 16 pmole cAMP/mg protein. When stimulated by 1-MeAde these forskolin-pretreated oocytes undergo a major (50-70%) decrease in their cAMP concentration. A similar decrease is triggered by mimetics of 1-MeAde, such as dithiothreitol, arachidonic acid (AA), and 8-hydroxyeicosatetraenoic acid (8-HETE), but not by adenine which is inactive. 1-MeAde-stimulated oocytes of Pisaster ochraceus also undergo a decrease in cAMP content, the size of which is increased by forskolin. Although a decrease in cAMP begins at sub-threshold 1-MeAde concentrations, the maximal decrease occurs at the same concentration of 1-MeAde needed for maturation induction and a further 1000-fold increase of the 1-MeAde concentration has no further effect. Upon removal of 1-MeAde, the cAMP concentration immediately increases to its original level. Sequential addition and removal of 1-MeAde triggers a sequential decrease and increase of the cAMP concentration, illustrating the continuous requirement for 1-MeAde for eliciting the decrease. Successive additions of 1-MeAde, however, do not trigger further decreases of the cAMP concentration. The temperature dependences of the cAMP concentration decrease and of the hormone-dependent period (HDP; the time of contact with 1-MeAde required for induction of maturation) are closely related. Forskolin, which increases the cAMP concentration, also increases the duration of the HDP (2.5-fold), delays the time course of protein phosphorylation burst and germinal vesicle breakdown, and inhibits AA- and 8-HETE-induced maturation. We conclude that 1-MeAde triggers a drop in cAMP concentration, which is tightly associated with the hormone-dependent period of oocyte maturation.  相似文献   

9.
Nitric oxide production by bone cells is fluid shear stress rate dependent   总被引:9,自引:0,他引:9  
Shear stress due to mechanical loading-induced flow of interstitial fluid through the lacuno-canalicular network is a likely signal for bone cell adaptive responses. Moreover, the rate (determined by frequency and magnitude) of mechanical loading determines the amount of bone formation. Whether the bone cells' response to fluid shear stress is rate dependent is unknown. Here we investigated whether bone cell activation by fluid shear stress is rate dependent. MC3T3-E1 osteoblastic cells were subjected for 15 min to fluid shear stress of varying frequencies and amplitudes, resulting in peak fluid shear stress rates ranging from 0 to 39.6 Pa-Hz. Nitric oxide production, a parameter for bone cell activation, was found to be linearly dependent on the fluid shear stress rate; the slope was steepest at 5 min (0.11 Pa-Hz(-1)) and decreased to 0.03 Pa-Hz(-1) at 15 min. We conclude that the fluid shear stress rate is an important parameter for bone cell activation.  相似文献   

10.
Biomechanical forces are emerging as critical regulators of cell function and fluid flow is a potent mechanical stimulus. Although the mechanisms of osteoblasts and osteocytes responding to fluid flow are being elucidated, little is known about how the osteoprogenitors, mesenchymal stem cells (MSCs), respond to fluid flow. Here, we examined the effects of laminar shear stress (LSS) on MSCs in vitro. MSCs from bone marrow of Sprague-Dawley rats were isolated, purified, and subjected to physiological levels of LSS. DNA synthesis and cell cycle were measured through [(3)H]thymidine and by flow cytometry, respectively, to detect the cellular proliferation. Annexin V immunostaining and Bcl-2/Bax mRNA expression were evaluated to determine the effect of LSS on MSCs apoptosis. Results showed that fluid shear stress caused a dose-related reduction of MSCs' proliferation rate with the majority of cells being arrested in the G(0) or G(1) phase. Moreover, it was found that physiological levels of LSS exerted a potent suppression effect on MSC apoptosis. In summary, these data revealed a critical role of LSS in maintaining the quiescence of MSCs.  相似文献   

11.
The process of mechanotransduction of bone, the conversion of a mechanical stimulus into a biochemical response, is known to occur in osteoblasts in response to fluid shear stress. In order to understand the reaction of osteoblasts to various times of flow perfusion, osteoblasts were seeded on three-dimensional scaffolds, and cultured in the following conditions: continuous flow perfusion, intermittent flow perfusion, and static condition. We collected samples on day 4, 8 and 12 for analysis. Osteoblast proliferation was demonstrated by cell proliferation and scanning electron microscopy assay. Additionally, the expression of known markers of differentiation, including alkaline phosphatase and osteocalcin, were tested by qRT-PCR and alkaline phosphatase activity assay, and the deposition of calcium was used as an indicator of mineralization demonstrated by calcium content assay. The results supported that low fluid shear stress plays an important role in the activation of osteoblasts: enhance cell proliferation, increase calcium deposition, and promote the expression of osteoblastic markers. Furthermore, the continuous flow perfusion is a more favorable environment for the initiation of osteoblast activity compared with intermittent flow perfusion. Therefore, the force and time of fluid shear stress are important parameters for osteoblast activation.  相似文献   

12.
Fluid flow induces Rankl expression in primary murine calvarial osteoblasts   总被引:5,自引:0,他引:5  
Mechanical loading of bone generates fluid flow within the mineralized matrix that exerts fluid shear stress (FSS) on cells. We examined effects of FSS on receptor activator of nuclear factor kappa B ligand (RANKL), a critical factor for osteoclast formation. Primary murine osteoblasts were subjected to pulsatile FSS (5 Hz, 10 dynes/cm(2)) for 1 h and then returned to static culture for varying times (post-FSS). Protein levels were measured by Western analysis and mRNA by Northern analysis, RT-PCR and quantitative PCR. There were 20- to 40-fold increases in RANKL mRNA at 2-4 h post-FSS. RANKL protein was induced by 2 h post-FSS and remained elevated for at least 8 h. Effects were independent of cyclooxygenase-2 activity. Small increases (up to three-fold) in mRNA of the decoy receptor for RANKL, osteoprotegerin, were seen. Five min of FSS, followed by static culture, was as effective in stimulating RANKL mRNA as 4 h of continuous FSS. FSS induced cAMP activity, and H-89, a protein kinase A (PKA) inhibitor, blocked the FSS induction of RANKL. H-89 also inhibited the PKC pathway, but specific PKC inhibitors, GF109203X and Go6983, did not inhibit FSS-induced RANKL. FSS induced phosphorylation of ERK1/2, and PD98059, an inhibitor of the ERK pathway, inhibited the FSS induction of RANKL mRNA 60%-90%. Thus, brief exposure to FSS resulted in sustained induction of RANKL expression after stopping FSS, and this induction was dependent on PKA and ERK signaling pathways. Increased RANKL after mechanical loading may play a role in initiating bone remodeling.  相似文献   

13.
Although there is no consensus as to the precise nature of the mechanostimulatory signals imparted to the bone cells during remodeling, it has been postulated that deformation-induced fluid flow plays a role in the mechanotransduction pathway. In vitro, osteoblasts respond to fluid shear stress with an increase in PGE(2) production; however, the long-term effects of fluid shear stress on cell proliferation and differentiation have not been examined. The goal of this study was to apply continuous pulsatile fluid shear stresses to osteoblasts and determine whether the initial production of PGE(2) is associated with long-term biochemical changes. The acute response of bone cells to a pulsatile fluid shear stress (0.6 +/- 0.5 Pa, 3.0 Hz) was characterized by a transient fourfold increase in PGE(2) production. After 7 days of static culture (0 dyn/cm(2)) or low (0.06 +/- 0.05 Pa, 0.3 Hz) or high (0.6 +/- 0.5 Pa, 3.0 Hz) levels of pulsatile fluid shear stress, the bone cells responded with an 83% average increase in cell number, but no statistical difference (P > 0.53) between the groups was observed. Alkaline phosphatase activity per cell decreased in the static cultures but not in the low- or high-flow groups. Mineralization was also unaffected by the different levels of applied shear stress. Our results indicate that short-term changes in PGE(2) levels caused by pulsatile fluid flow are not associated with long-term changes in proliferation or mineralization of bone cells.  相似文献   

14.
Experimental investigation of the rheological activation of blood platelets   总被引:1,自引:0,他引:1  
In order to define various aspects of platelet rheological activation, samples of whole blood and platelet-rich plasma (PRP) from the same donors were subjected for 5 min to shear rates increasing from 10 to 10000 sec-1 (shear stresses from 10(-2) to 30 Pa approximatively) in a Couette type viscometer. The following parameters were measured: erythrocyte hemolysis; lactic dehydrogenase activity; plasma B-Thromboglobulin (B-TG); adenine nucleotides, and platelet photometric aggregation. The experimental results reveal that: In whole blood, hemolysis only reached at maximum 2% of the total hemolysis. Plasma LDH activity increased regularly beyond 500 sec-1, in close correlation with B-TG plasma concentration. In contrast, ADP and ATP levels remained stable up to 1000 sec-1 then increased slowly. In PRP, the LDH, ADP and ATP levels remain practically stable up to shear rates around 5000 sec-1. In contrast, B-TG appeared to be released in plasma at shear rate values of 3000 sec-1 and its progression is only correlated with the other parameters, when the platelet lysis occurred. Finally, a rapid and complete inhibition of platelet aggregation to ADP was observed from 5000 sec-1.  相似文献   

15.
Bones adjust their structure to withstand the mechanical demands they experience. It is suggested that flow-derived shear stress may be the most significant and primary mediator of mechanical stimulation. In this study, we designed and fabricated a fluid flow cell culture system that can load shear stress onto cells cultured on 3D scaffolds. We evaluated the effect of different culture techniques, namely, (1) continuous perfusion fluid flow, (2) intermittent perfusion fluid flow, and (3) static condition, on the proliferation of osteoblasts seeded on partially deproteinized bones. The flow rate was set at 1 ml/min for all the cells cultured using flow perfusion and the experiment was conducted for 12 days. Scanning electron microscopy analysis indicated an increase in cell proliferation for scaffolds subjected to fluid shear stress. In addition, the long axes of these cells lengthened along the flowing fluid direction. Continuous perfusion significantly enhanced cell proliferation compared to either intermittent perfusion or static condition. All the results demonstrated that fluid shear stress is able to enhance the proliferation of cells and change the form of cells.  相似文献   

16.
The effect of a temporal gradient in shear and steady shear on the activity of extracellular signal-regulated protein kinases 1 and 2 (ERK1/ERK2), c-fos, and connexin43 (Cx43) in human endothelial cells was investigated. Three laminar flow profiles (16 dyn/cm(2)), including impulse flow (shear stress abruptly applied for 3 s), ramp flow (shear stress smoothly transitioned at flow onset), and step flow (shear stress abruptly applied at flow onset) were utilized. Relative to static controls, impulse flow stimulated the phosphorylation of ERK1/ERK2 8.5- to 7.5-fold, respectively at 10 min, as well as the mRNA expression of c-fos 51-fold at 30 min, and Cx43 8-fold at 90 min. These high levels of mRNA expression were sustained for at least 4 h. In contrast, ramp flow was unable to significantly induce gene expression and even inhibited the activation of ERK1/ERK2. Step flow, which contains both a sharp temporal gradient in shear stress and a steady shear component, elicited only moderate and transient responses, indicating the distinct role of these fluid shear stimuli in endothelial signal transduction. The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 inhibited impulse flow-induced c-fos and Cx43 mRNA expression. Thus these findings implicate the involvement of ERK1/ERK2, c-fos, and Cx43 in the signaling pathway induced by the temporal gradient in shear.  相似文献   

17.
Structural adaptation of the bone tissue is mediated by loading-induced interstitial fluid flow within the bone microstructure. Within this framework, osteocytes fulfill the central mechanotransductive role in the bone remodeling process. While osteocytes have been demonstrated to be exquisitely sensitive to various forms of fluid flow stimulus in vitro, the effect of different oscillating fluid flow (OFF) parameters on osteocyte activity has yet to be systematically characterized. In this study, we investigate the effect of three OFF parameters on osteocyte activity in vitro and hypothesize that COX-2, RANKL, and OPG mRNA expression in osteocytes are sensitive to the OFF parameters: peak shear stress amplitude (0.5 Pa, 1 Pa, 2 Pa, and 5 Pa), oscillating frequency (0.5 Hz, 1 Hz, and 2 Hz), and total flow duration (1 h, 2 h, and 4 h). Our findings demonstrate that COX-2 mRNA levels are elevated in osteocytes subjected to higher peak shear stress amplitudes and longer flow durations, while RANKL/OPG mRNA levels decreased to a minimum threshold in response to higher peak shear stress amplitudes, faster oscillating frequencies, and longer flow durations. These findings suggest that dynamic fluid flow with higher peak shear stress amplitudes, faster oscillating frequencies, and longer loading durations provide the best conditions for promoting bone formation.  相似文献   

18.
Fluid shear stress plays an important role in bone remodeling, however, the mechanism of mechanotransduction in bone tissue remains unclear. Recently, ERK5 has been found to be involved in multiple cellular processes. This study was designed to investigate the potential involvement of ERK5 in the proliferative response of osteoblastic cells to cyclic fluid shear stress. We reported here that cyclic fluid shear stress promoted ERK5 phosphorylation in MC3T3-E1 cells. Inhibition of ERK5 phosphorylation attenuated the increased expression of AP-1 and cyclin D1 and cell proliferation induced by cyclic fluid flow, but promoted p-16 expression. Further more, we found that cyclic fluid shear stress was a better stimuli for ERK5 activation and cyclin D1 expression compared with continuous fluid shear stress. Moreover, the pharmacological ERK5 inhibitor, BIX02189, which inhibited ERK5 phosphorylation in a time-dependent manner and the suppression lasted for at least 4 h. Taken together, we demonstrate that ERK5/AP-1/cyclin D1 pathway is involved in the mechanism of osteoblasts proliferation induced by cyclic fluid shear stress, which is superior in promoting cellular proliferation compared with continuous fluid shear stress.  相似文献   

19.
Hydroxyethyl starch (HES) has often been used as a plasma expander, but questions still remain concerning the mechanisms by which it produces changes in the rheological properties of blood and erythrocyte (RBC) suspensions under various flow conditions. The present investigation has shown that the dynamic viscosity of HES (232,000 and 565,000 daltons) solutions rises in a nonlinear fashion with increasing HES concentration, and for a given concentration of HES exhibits Newtonian behavior at shear rates between 0.15 to 124 sec-1. At low (less than 0.9 sec-1) shear rates the apparent viscosity of a 40% RBC suspension increases with lower concentrations of HES because of RBC aggregation. At higher concentrations of HES, increases in suspension viscosity are due to an increase in the viscosity of the continuous phase since the RBC are largely disaggregated. At high (greater than 36 sec-1) shear rates the relative viscosity (eta/eta O) of RBC suspensions slowly decreases with increasing HES concentration. At low shear rates eta/eta O increases and then decreases with increasing HES concentration. Evidence of the concentration-dependent effects of HES on RBC aggregation is provided not only by the viscometric analysis but also from measurements of erythrocyte sedimentation rate (ESR) and the zeta sedimentation ratio (ZSR). HES is a more potent aggregating agent in phosphate buffered saline (PBS) than it is in plasma. Polymer size has only a slight effect on the extent of RBC aggregation produced, but does have a significant effect on the concentration of polymer at which maximum aggregation occurs. The viscosity-corrected electrophoretic mobility of RBC in HES rises monotonically with the concentration of HES in the suspending medium. Decreases in the extent of RBC aggregation with increasing polymer concentrations probably result from an increase in the electrostatic repulsive forces between the cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号