首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The common spiny mouse Acomys cahirinus, of Ethiopian origin, has a widespread distribution across arid, semi-arid and Mediterranean parts of the Arabian sub-region. We compared the daily energy expenditure (DEE), water turnover (WTO) and sustained metabolic scope (SusMS=DEE/resting metabolic rate) of two adjacent populations during the winter. Mice were captured from North- and South- facing slopes (NFS and SFS) of the same valley, comprising mesic and xeric habitats, respectively. Both DEE and SusMS winter values were greater in NFS than SFS mice and were significantly greater than values previously measured in the summer for these two populations in the same environments. However, WTO values were consistent with previously established values and were not significantly different from allometric predictions for desert eutherians. We suggest that physiological plasticity in energy expenditure, which exists both temporally and spatially, combined with stable WTO, perhaps reflecting a xeric ancestry, has enabled A. cahirinus to invade a wide range of habitats.  相似文献   

2.
We have developed a flow-through method for measuring oxygen consumption in fish which allows continuous monitoring over periods of days with good accuracy. Our goal was to determine the changes in basal metabolic rate in estuarine fish as a function of salinity. We show that in Fundulus heteroclitus, the oxygen consumption drops by 50% during the first 12 hr in the respirometer, as the fish cease exploratory movements. We have determined the influence of temperature and body size on resting respiratory rate, but failed to find any circadian or tidal rhythm in aerobic respiration. With these variables controlled, we determined that changing from 10 to 30 ppt water had no demonstrable effect on oxygen uptake. Since there must be a large change in osmotic flux due to this change in salinity, it appears that the fish might be diverting energy from other uses rather than increasing aerobic energy production to meet the increased osmoregulatory work load.  相似文献   

3.
  • 1.1. After step-like increases in salinity the shrimps exhibit the smallest increase in oxygen consumption in the lower salinity range. At higher salinities the shrimps show longer recovery times and greater increases in the metabolic rate after salinity shock.
  • 2.2. In steady-state experiments, the shrimps display the lowest oxygen consumption rates near the isosmotic point. The lowest metabolic rates occur at salinities of 3‰ and 10‰ At salinities of 20‰ and above the rate of metabolism increases by 20–30%.
  • 3.3. The calculated osmoregulatory work for animals in fresh water amounts to only 2.7% of routine metabolism and drops to 1.1% for shrimps in 3‰ and 0.7% in 5‰ salinity.
  • 4.4. Locomotory activity in the form of position change was not responsible for the increased oxygen consumption of the animals after salinity shocks. A “tentative swimming activity” by fast and frequent beating of the pleopods without position change may be an important factor in the increase of metabolic rates.
  • 5.5. In its temperature response, the brackish water population has a higher metabolic rate than the freshwater one. Between 5 and 35°C Q 10-values range from 4.01 to 1.37.
  相似文献   

4.
We compared body temperature (T(b)) daily rhythms in two populations of common spiny mice, Acomys cahirinus, during summer and winter months in relation to increasing dietary salt content. Mice were collected from the North and South facing slopes (NFS and SFS) of the same valley, that are exhibiting mesic and xeric habitats, respectively. During the summer, whilst mice were offered a water source containing 0.9% NaCl, SFS individuals had T(b) peak values at 24:00, whereas NFS individuals had peak values at 18:00. When the salinity of the water source was increased, from 0.9 to 2.5% and then 3.5%, the difference between maximal and minimal T(b) of both populations increased. In addition, with increased salinity, the T(b) daily peak of SFS mice shifted to 18:00. During the winter, the mean daily T(b) values of both populations of mice were lower than during the summer. At 0.9% salinity, the NFS mice exhibited a daily T(b) variation with a peak at the beginning of the night. However, we did not detect any significant variation in daily T(b) in the SFS mice. At 2.5% salinity, the difference between the mean daily T(b) of mice from the two slopes increased. In winter we were unable to increase the salinity to 3.5% as the animals began to lose weight rapidly. We suggest that common spiny mice that inhabit these two micro-habitats are forming two discrete populations that respond differently to the environmental pressures prevailing in each habitat, by evolving different physiological capacities.  相似文献   

5.
One mechanism for physiological adjustment of small mammals to different habitats and different seasons is by seasonal acclimatization of their osmoregulatory system. We examined the abilities of broad-toothed field mice (Apodemus mystacinus) from different ecosystems (‘sub-alpine’ and ‘Mediterranean’) to cope with salinity stress under short day (SD) and long day (LD) photoperiod regimes. We compared urine volume, osmolarity, urea and electrolyte (sodium, potassium and chloride) concentrations. Significant differences were noted in the abilities of mice from the two ecosystems to deal with salinity load; in particular sub-alpine mice produced less concentrated urine than Mediterranean mice with SD− sub-alpine mice seeming to produce particularly dilute urine. Urea concentration generally decreased with increasing salinity, whereas sodium and potassium levels increased, however SD− sub-alpine mice behaved differently and appeared not to be able to excrete electrolytes as effectively as the other groups of mice. Differences observed provide an insight into the kinds of variability that are present within populations inhabiting different ecosystems, thus how populations may be able to respond to potential changes in their environment. Physiological data pertaining to adaptation to increased xeric conditions, as modelled by A. mystacinus, provides valuable information as to how other species may cope with potential climatic challenges.  相似文献   

6.
In temperate portions of North America, some bats that remain active during winter undergo short periods of hibernation below leaf litter on the forest floor during episodes of below-freezing weather. These winter roosts may provide above-freezing conditions, but the thermal conditions under leaf litter are unclear. Further, little is known of the relationship between temperatures under litter and potential energy expenditure by bats. Therefore, I characterized thermal conditions below leaf litter, compared temperatures encountered under different litter depths, and evaluated the quality of these sites as hibernacula based on potential energy use by eastern red bats (Lasiurus borealis) during winter in forests of the Ouachita Mountains, Arkansas, USA. Over an averaged 24-h period, there was no significant difference in temperature among different depths of leaf litter, but temperatures under litter remained significantly warmer than air temperatures, especially during nighttime and under snow cover. Temperatures below leaf litter were significantly warmer on south-facing slopes than north-facing slopes, but predicted metabolic rates did not differ among aspects. Predicted metabolic rates of eastern red bats were lowest under the deepest leaf litter measured (8 cm) and highest under ambient air conditions. Depending on depth of leaf litter cover, predicted energy savings based on O2 consumption from roosting under litter were 1.9 to 3.1 times greater than remaining in ambient air during periods of freezing weather and around 5.6 times greater when roosting under leaf litter with snow cover. A model for predicted total energy consumption (estimated as the total oxygen consumption during a 24-h period) by eastern red bats indicated that when roosting below leaf litter, energy consumption would be reduced with greater ground temperatures, greater leaf litter moisture, and when located on south-facing slopes. Predicted metabolic rates and total energy consumption may provide more insight on the quality of roost sites for wintering bats than temperature of roost sites alone.  相似文献   

7.
The Ortolan Bunting Emberiza hortulana is a long-distance migrant that has suffered major population declines across much of its European breeding range. While northern populations are bound largely to farmland, Mediterranean populations are largely confined to habitats subject to recurrent wildfires. Habitat selection of the Ortolan Bunting was assessed in a recently burnt area in Catalonia at landscape and habitat scales. A Zero-inflated Poisson procedure was used to model the abundance of birds in relation to landscape and habitat variables. The most parsimonious landscape model predicted the highest abundance on south-facing slopes, with a gradient above 10°. The most parsimonious habitat model showed a positive quadratic effect of bare ground and regenerating oak Quercus spp., with predicted optima for abundance around 20–30% and 20% cover, respectively. There was a clear relationship between predicted abundance of the Ortolan Bunting and post-fire regenerating oak shrubs. South-facing, moderately sloping areas were favoured and bare ground was a key feature of the species' habitat. A matrix combining patches of sparse oak shrubs and patches of bare ground appears to be the optimal breeding habitat in the Mediterranean. The maintenance or provision of similar habitat features, especially patches of bare ground, may prove crucial for the conservation of rapidly declining Ortolan Bunting populations on farmland across temperate Europe.  相似文献   

8.
Thapsia garganica is a herbaceous perennial in the Apiaceae, distributed around the Mediterranean and traditionally used in North Africa as a remedy for arthritis, herpes, hair-fall, hypertension, rheumatic, eczema and scabies. T. garganica is the source of thapsigargin: known for killing cancer cells. Seven populations were studied in sites differing in aspect and elevation within Al Jebel Al Akhdar in Libya. We studied the within-population size distribution of individuals, the timing of the phenological events, and vegetative and reproductive traits.Thapsia garganica showed high flexibility of functional traits and shifts in the timing of phenological events in response to elevation and aspect (north- or south-facing slopes). Local soil properties, together with effects due to altitude and aspect, could be direct causes of the observed differences in terms of population size and phenological traits. The phenological patterns detected also provide insights into the species response to climate change. Despite this phenotypic flexibility, and good growth in sites at 300–700 m a. s. l. on south-facing slopes, most sites in this study have an unstable size-structure, with few small individuals. This raises concerns about the long-term persistence of the other populations of this species in Al Jebel Al Akhdar.  相似文献   

9.
We assessed the effects of body lipid content on the resting metabolic rate and specific dynamic action (SDA) of the southern catfish Silurus meridionalis. Obese and lean fish were obtained by feeding the fish with two different feeds at 27.5 °C for 4 weeks prior to the experiment. The fish were fed with experimental diets with a meal size of 4% by body mass. A continuous-flow respirometer was used to determine the oxygen consumption rate at 2-h intervals until the postprandial oxygen consumption rate had returned to the preprandial level. The body lipid content of the obese fish was significantly greater than that of the lean fish. The metabolic parameters evaluated (resting metabolic rate, peak metabolic rate (Rpeak), factorial ratio, time to peak, duration, energy expended on SDA (SDAE), or SDA coefficient) were not significantly affected by body fat content in terms of the whole-body or mass-specific values. Increased body fat content did not decrease the resting metabolic rate in the southern catfish, which might be due to the higher levels of highly unsaturated fatty acids in these fish. The results also suggest that the body composition does not appear to affect the SDA response.  相似文献   

10.
Animals in wave-exposed habitats must constantly contend with the hydrodynamic forces of lift and drag. In this study, we investigated aspects of the metabolic response of Haliotis iris to simulated wave forces varying in magnitude up to 9.6 N applied to the shell at 69° to horizontal, alternately from anterior and posterior directions, with a period of 10s. Shell adductor muscle activity (electromyogram, EMG), heart rate, and oxygen consumption were monitored during force application and during extended recovery. EMG spiking was absent at zero force, but increased markedly with increasing force, in synchrony with the wave cycle. In contrast, heart rate was unaffected by wave forces and varied by only 5% over the whole range of applied forces. During force application, oxygen consumption increased by 10-25% above resting rates and remained elevated throughout a 5-hour recovery period, indicating a switch to anaerobic metabolism. It is concluded that living in a wave-swept environment is metabolically costly for abalone although this may be compensated by improved food availability and more efficient ventilation induced by external flow.  相似文献   

11.
Samples of Cepaea nemoralis (L.) taken from sand-dune, lowland and mountain populations show differences in body colour. Overall, sand-dune populations are much paler than those in the other two areas. On sand-dunes, darker and more variable populations are found in densely vegetated habitats; in the lowland, darker forms occur further inland but there is no correlation with vegetation; mountain populations are darker and less variable on north- than south-facing slopes. Overall differences between areas can be ascribed to climatic selection and differences in variation within areas to niche width.  相似文献   

12.

1. 1. At the preferred body temperature (35°C) resting metabolic rate was 0.155 ± 0.015 ml O2/g·h and heart rate was 54 ± 11 beats/min. Spontaneous activity at this body temperature caused a two-fold increase in heart rate and a six-fold increase in O2 consumption. Maximum values being 0.86 ml/g·h with an O2 pulse of 13.6 × 10−5 ml/g·beat.

2. 2. Pre-treatment for seven days with thyroxine caused a 27% increase in resting metabolic rate and a 63% increase in the thermal gradient between core and ambient temperature at the preferred body temperature.

3. 3. Noradrenaline reduced heart rate but had no effect at the dosage recommended on metabolic rate at body temperatures of either 35 or 15°C, suggesting that non-shivering thermogenesis is absent in lizards. The evolutionary implications of these results have been briefly discussed.

Author Keywords: Thermoregulation; preferred body temperature; oxygen consumption; metabolic rate; cardiac rate; non-shivering thermogenesis; thyroxine; noradrenaline; reptiles; Varanus species  相似文献   


13.
Three-spined sticklebacks (Gasterosteus aculeatus L.) living at the southern limit of the species distribution range could possess specific morphological and physiological traits that enable these fish to live at the threshold of their physiological capacities. Morphological analysis was carried out on samples of sticklebacks living in different saline habitats of the Camargue area (Rhone delta, northern Mediterranean coast) obtained from 1993 to 2017. Salinity acclimation capacities were also investigated using individuals from freshwater-low salinity drainage canals and from mesohaline–euryhaline lagoons. Fish were maintained in laboratory conditions at salinity values close to those of their respective habitats: low salinity (LS, 5‰) or seawater (SW, 30‰). Fish obtained from a mesohaline brackish water lagoon (BW, 15‰) were acclimated to SW or LS. Oxygen consumption rates and branchial Na+/K+-ATPase (NKA) activity (indicator of fish osmoregulatory capacity) were measured in these LS or SW control fish and in individuals subjected to abrupt SW or LS transfers. At all the studied locations, only the low-plated “leiurus” morphotype showed no spatial or temporal variations in their body morphology. Gill rakers were only longer and denser in fish sampled from the LS–freshwater (FW) drainage canals. All fish presented similar physiological capacities. Oxygen consumption rates were not influenced by salinity challenge except in SW fish transferred to LS immediately and 1 h after transfer. However, and as expected, gill NKA activity was salinity dependent. Sticklebacks of the Camargue area sampled from habitats with contrasted saline conditions are homogenously euryhaline, have low oxygen consumption rates and do not appear to experience significantly greater metabolic costs when challenged with salinity. However, an observed difference in gill raker length and density is most probably related to the nutritional condition of their habitat, indicating that individuals can rapidly acclimatize to different diets.  相似文献   

14.
Juvenile gray snapper (Lutjanus griseus) occupy a wide range of estuarine and nearshore habitats that differ in physico-chemical properties. To quantify the energetic cost of inhabiting these different habitats, routine metabolism of individual gray snapper was measured in the laboratory at 20 combinations of temperature (18, 23, 28, and 33 °C) and salinity (5, 15, 25, 35, and 45 psu). An open, flow-through respirometer was used, enabling trials to be run for long periods (∼16 h), while maintaining water quality (dissolved O2>70% saturation), and providing fish sufficient time to habituate to the chambers undisturbed. Video recordings of fish in the respirometer chambers were analyzed to quantify the spontaneous activity rate of individuals. Analysis of covariance, using fish weight and mean activity rate as covariates, indicated significant temperature and salinity effects on oxygen consumption. Oxygen consumption was significantly higher at high salinities, and the salinity effect was temperature dependent. A polynomial equation describing oxygen consumption as a function of temperature and salinity indicated the increase due to salinity from 5 to 45 psu at high temperatures (30-33 °C) was equivalent to a 3 °C increase in temperature. At intermediate temperatures (24-26 °C), the increase due to salinity from 5 to 45 psu was less dramatic, equivalent to a 2 °C increase in temperature. At the lowest temperatures (18 °C), salinity did not have a significant effect on oxygen consumption. The increased metabolic costs in high salinities (∼7% at the high temperature) represent a significant energy cost for juveniles, that would need to be balanced by lower predation risk or greater food availability to result in similar juvenile production compared to lower salinity environments.  相似文献   

15.
Gray snapper (Lutjanus griseus) encounter a wide range of temperatures and salinities in nearshore and estuarine juvenile habitats. The energetic response of juvenile gray snapper to temperature and salinity was measured in laboratory experiments to determine the influence of these physicochemical factors on the potential value of different juvenile nurseries. Maximum consumption and growth rates of juvenile (25-50 mm SL) gray snapper were determined in 12-day trials at 20 temperature/salinity combinations representing conditions in juvenile habitats. Ad libitum feeding level of individual fish was measured daily. Maximum weight specific feeding rate increased significantly with temperature and salinity; however, the effect of salinity was much less than that of temperature. Linear growth rate and specific growth rate both increased with temperature, and salinity did not have a significant effect on either. Gross growth efficiency (K1, growth×consumption−1*100) increased with temperature and was significantly lower at high salinities, indicating increased energetic costs. The higher K1 at lower salinities has several implications for juvenile gray snapper in low salinity habitats: (1) they would need less food to achieve the same somatic growth as juveniles in high salinity habitats; (2) they would have higher growth at limited ration levels as compared to high salinity habitats; and (3) they would have less impact on prey populations than higher salinity habitats assuming similar gray snapper densities.  相似文献   

16.
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper‐osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.  相似文献   

17.
Muscular activity patterns in red and white muscles linked to oxygen consumption were studied during critical swimming tests in the sea bass (Dicentrarchus labrax Linnaeus 1758). The species is one of the most important for Mediterranean Sea aquaculture. A sigmoid model was used to fit both the oxygen consumption and red muscle activity while the white muscle activity pattern was described by an exponential model. Red muscle reaches an activation plateau close to critical swimming speed mostly due to the oxygen diffusion velocity in tissues. The exponential activation of white muscle appears to be linked to short and sudden periods of great energy need to cope with adverse conditions such as predation and escape. Both oxygen consumption and muscular activity were found to be size dependent. The bioenergetics of sea bass was modelled based on fish mass and swimming speed to predict the minimum and maximum speed as well as the mass-specific active metabolic rate and standard metabolic rate. An important finding was that contrary to other well-known species, swimming at subcritical speeds in sea bass involves both red and white muscle in different proportions.  相似文献   

18.
The rate of oxygen consumption was investigated in fed larval, nymphal and adult Ornithodoros turicata ticks and in starved nymphal and adult ticks. Oxygen consumption rate of fed adult ticks increased with increasing temperature. The metabolic rate of adult ticks was affected by starvation whereby starved adult ticks showed a significantly lower oxygen consumption than their fed counterparts. The oxygen consumption rate of fed female ticks was significantly higher than that of fed males but, there was no significant difference between the oxygen consumption rates of starved female versus starved male ticks. Oxygen consumption of fed larvae was significantly greater than those of fed first through third instar nymphs. Fed and starved nymphal ticks as well as fed adult ticks ventilated continuously. In contrast, starved adults ventilated discontinuously. The ability to reduce metabolic rate, plus the capability to ventilate discontinuously allow O. turicata adults to cope with prolonged starvation.  相似文献   

19.
Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption values, or standard metabolic rate, and hence it is concluded that that metabolic cold adaptation in the traditional sense is an artefact.  相似文献   

20.
Inland saline waters are globally threatened habitats that harbour unique assemblages of specialist invertebrates. In many Mediterranean regions, irrigation associated with intensive agriculture is lowering the salinity of these habitats, resulting in the loss of their specialist biota, although the mechanisms by which reductions in salinity lead to species loss are poorly understood. In the present study, the effects of reduced salinity on the temperature tolerance and thermal acclimatory abilities of two related species of hypersaline water beetles, Nebrioporus baeticus (Schaum) and Nebrioporus ceresyi (Aubé), are explored. Both upper (UTL) and lower thermal limits (LTL) are assessed, and both salinity and temperature are found to influence the thermal biology of Nebrioporus. Mean UTLs are greater in individuals of both species acclimated at high salinities, with salinity appearing to be more important than acclimation temperature in determining UTL. In both taxa, the lowest mean LTLs are recorded in individuals acclimated at the highest salinities and lowest temperatures; temperature‐dependent acclimation is only reported after exposure to relatively high salinities. The data show that salinity influences the thermal tolerance and acclimatory ability of these hypersaline beetles, and that lowered salinity compromises the ability of adult Nebrioporus to cope with both heat and cold. Such an effect may partly explain why specialist species are lost from hypersaline habitats subject to salinity reductions, and suggests that ongoing reduction in salinity may compromise the ability of such specialist taxa to cope with rapid climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号