首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leopard seal is a top-order predator in the Southern Ocean ecosystem and preys on a wide variety of vertebrate species including seals and penguins. We assessed the use of hairs found in leopard seal scats to identify the species of pinniped consumed. A reference collection of hairs was obtained from four potential leopard seal prey species including crabeater, Weddell, Ross, and Southern elephant seals. Discrimination techniques applied to terrestrial mammals did not allow for identification of the seal hairs. Instead, a 2-dimensional (2-D) and 6-dimensional (6-D) analysis technique utilising Mahalanobis distances (D 2) was used. The smallest Mahalanobis distance together with the largest value of p(F) positively identified hairs from each species. The 6-D analysis was more accurate and applied to hairs found in the leopard seal scats. The majority of prey species were identified as crabeater seals, which are a known prey item of the leopard seal.  相似文献   

2.
Twenty‐four microsatellite loci were isolated from three species of Antarctic seals (Subfamily Monachinae, Tribe Lobodontini). Eleven loci were cloned from Weddell seal, Leptonychotes weddellii, seven from leopard seal, Hydrurga leptonyx, and six from crabeater seal, Lobodon carcinophagus. Variability was assessed in Weddell seals collected in McMurdo Sound, leopard seals from Bird Island, South Georgia, and crabeater seals sampled in the eastern Ross Sea. All loci were variable in the three species used for cloning and 22 of these loci amplified variable products in the Ross seal, Ommatophoca rossii. Cross‐species amplification was largely successful, with an average of 19 loci amplifying products in other phocids.  相似文献   

3.
Summary Stomach contents of crabeater (Lobodon carcinophagus) and leopard (Hydrurga leptonyx) seals collected in the pack ice west of the antarctic Peninsula in August–September 1985 were analyzed. Food remains were found in 7 of 56 crabeater seals and 5 of 29 leopard seals. The primary foods were krill (Euphausia superba) which occurred in all 12 stomachs, and fish (Pleuragramma antarcticum) which occurred in 3. Eleven of the seals with food in their stomachs were collected in the southern portion of Bismark Strait. The incidence of feeding seemed highest in pregnant females. These results, and comparisons with previous collections, suggest that krill were not abundant or widely distributed in the area at the time the seals were collected. The sizes of krill eaten by crabeater and leopard seals were very similar, and were significantly larger than krill found in 2 samples taken by midwater trawls in nearby open water.  相似文献   

4.
Year-round monitoring of five Antarctic pinnipeds was conducted in Admiralty Bay from 1988 up to 2000. Two breeding species: southern elephant sealsMirounga leonina (Linnaeus, 1758) and Weddell sealsLeptonychotes weddellii (Lesson, 1826), were present throughout the year. Three other species: crabeater seals Lobodon carcinophagus (Hobron and Jacquinot, 1842), leopard sealsHydrurga leptonyx (Blainville, 1820), and Antarctic fur sealsArctocephalus gazella (Peters, 1875) visited the area only for short periods. During this study, the abundance of elephant seals was stable, whereas those of Weddell and crabeater seals declined. Leopard seals numbers fluctuated irregularly. We detected a possible immigration from South Georgia: of a stable magnitude for elephant seals, and of variable magnitude, depending on food accessibility, for Antarctic fur seals. We found a strong recurrence of the spatial distributions of elephant, Weddell, and Antarctic fur seals in the 13 oases on the shore of Admiralty Bay. Annual distribution patterns were characteristic for each species. The innermost beaches were used predominantly by the animals during their annual fasts: the breeding and the moulting seasons.  相似文献   

5.
Diving physiology and at-sea behavior of a juvenile leopard seal (Hydrurga leptonyx) were opportunistically measured in the Antarctic Peninsula during winter 2002. Total body oxygen stores were estimated from measures of hematocrit, hemoglobin, myoglobin, and total blood volume and were used to calculate an aerobic dive limit (ADL). Movement patterns and diving behavior were measured by equipping the seal with a Satellite Relay Data Logger that transmitted data from 8–31 August 2002. The seal remained in a focal area, in contrast to crabeater seals tracked simultaneously. The seal displayed short, shallow dives (mean 2.0±1.4 min, 44±48 m) and spent 99.9% of its time within the estimated ADL of 7.4 min. The shallow diving behavior contradicts previous diet research suggesting Antarctic krill (Euphausia superba) is the primary prey of leopard seals during the winter months as krill were found at deeper depths during this period. These measurements of diving and movement of a leopard seal provide valuable preliminary data necessary to develop future research on the at-sea behavior of an apex predator in the Antarctic ecosystem.  相似文献   

6.
The morphology of the principal sections of the gastrointestinal system of two Antarctic seals with different dietary habits, namely, the Weddell seal (Leptonychotes weddellii) and the crabeater seal (Lobodon carcinophagus), has been investigated. Histologically examined by light microscopy, the tissue layers of the gastrointestinal tract of both seals are almost identical to those observed in most other mammals and no major differences in principle organization could be found between the two seal species. The ultrastructure of the gastric and intestinal epithelial cells has been examined and is also closely comparable to that of these cells in other mammals; however, Paneth cells have not been found in our material. In general, therefore, adaptations of the gastrointestinal tract to the aquatic environment or the diet are not obvious at the morphological levels of organization studied. Histochemical differences are found between the two closely related species; mucins of the surface epithelium in the stomach of Weddell seals are highly sulfated, while those in the crabeater seal are not. Mucous neck cells in Weddell seals contain acid mucosubstances, while those of crabeater seals contain neutral ones. Goblet cells in the small and large intestine in Weddell seals contain both neutral and acid mucosubstances. Both mucin types are detected in the crabeater seal; however, the mucins of the colon in the crabeater seal are more highly sulfated than those in the Weddell seal. The ratio of globet cells to enterocytes in the large intestine of crabeater seals is higher than that in Weddell seals. © 1995 Wiley-Liss, Inc.  相似文献   

7.
The diet of male and female leopard seals (Hydrurga leptonyx) was investigated in Prydz Bay, Eastern Antarctica. A total of 70 scats, 1 regurgitate and 3 stomach contents were collected, during the austral summer, between November 1999 and March 2002. Eight prey species were identified, including birds, mammals, fish and invertebrates. Adelie penguins (Pygoscelis adeliae) were the main prey item and crabeater seals (Lobodon carcinophagus), benthic and pelagic fish, amphipods and krill were found to supplement the diet. Cephalopods did not occur in the diet. Crabeater seals were still being captured well after weaning, and were found in the diet of both male and female leopard seals.  相似文献   

8.
The structure of the kidney of Leptonychotes weddelli was examined using corrosion casts, India ink injection, and histological methods. Some observations were made on the kidney of the crabeater seal (Lobodon carcinophagus) and the elephant seal (Mirounga leonina). The kidneys in all three species are reniculate, as in many other marine mammalian species. Features that have not been described previously in a phocid seal are a peripyramidal muscle, and venous drainage characterized by a large extrinsic system and a small intrinsic system. Examination of specialized fornices, relative medullary thickness, and the volumes of juxtamedullary relative to peripheral glomeruli (all of which relate to urine concentrating ability) revealed that each reniculus of Leptonychotes is similar to the unilobar kidney of a small mammal that produces only moderately concentrated urine. The high glomerular volume to cortical volume ratio may be related to high glomerular filtration rates after feeding observed in marine mammals. It is concluded that reniculation is more likely to be related to the large size of most marine mammals than to some factor related directly to the marine environment.  相似文献   

9.
The gut microbiota of mammals underpins the metabolic capacity and health of the host. Our understanding of what influences the composition of this community has been limited primarily to evidence from captive and terrestrial mammals. Therefore, the gut microbiota of southern elephant seals, Mirounga leonina, and leopard seals, Hydrurga leptonyx, inhabiting Antarctica were compared with captive leopard seals. Each seal exhibited a gut microbiota dominated by four phyla: Firmicutes (41.5 ± 4.0%), Fusobacteria (25.6 ± 3.9%), Proteobacteria (17.0 ± 3.2%) and Bacteroidetes (14.1 ± 1.7%). Species, age, sex and captivity were strong drivers of the composition of the gut microbiota, which can be attributed to differences in diet, gut length and physiology and social interactions. Differences in particular prey items consumed by seal species could contribute to the observed differences in the gut microbiota. The longer gut of the southern elephant seal provides a habitat reduced in available oxygen and more suitable to members of the phyla Bacteroidetes compared with other hosts. Among wild seals, 16 ‘core’ bacterial community members were present in the gut of at least 50% of individuals. As identified between southern elephant seal mother–pup pairs, ‘core’ members are passed on via vertical transmission from a young age and persist through to adulthood. Our study suggests that these hosts have co‐evolved with their gut microbiota and core members may provide some benefit to the host, such as developing the immune system. Further evidence of their strong evolutionary history is provided with the presence of 18 shared ‘core’ members in the gut microbiota of related seals living in the Arctic. The influence of diet and other factors, particularly in captivity, influences the composition of the community considerably. This study suggests that the gut microbiota has co‐evolved with wild mammals as is evident in the shared presence of ‘core’ members.  相似文献   

10.
The southern elephant seal (Mirounga leonina) has the ability to dive for 2 h and reach depths of 1200 m. This creature is also exceptional in having a small intestine that is 25 times body length. Krockenberger and Bryden advanced the hypothesis that the long small intestine has developed to compensate for the extended periods with reduced or even abolished intestinal blood perfusion during diving. To test this hypothesis we have measured small-intestinal lengths in crabeater (Lobodon carcinophagus), Weddell (Leptonychotes weddellii), Ross (Ommatophoca rossi), leopard (Hydrurga leptonyx), harp (Phoca groenlandica), ringed (Phoca hispida) and hooded (Cystophora cristata) seals and related them to available data on their maximal dive duration. We found no significant correlation (P > 0.05) between intestinal length relative to body length and diving ability, but we found that small-intestinal internal area was significantly (P < 0.05) related to body length. A crude scanning electron microscopical examination of the small intestines of Weddell, crabeater, hooded and harp seals failed to reveal any gross anatomical differences between small-intestinal surfaces. This suggests that gut dimension in this variety of phocid species with widely differing diving ability is not related to diving habit, but is instead related to body size. The transit time of digesta was determined in two 1-year-old harp seals by use of radiopaque polyethylene rings of 4-mm diameter followed by X-ray examination, as markers for the solid phase passage, and chromium ethylene-diaminetetra acetic acid (Cr-EDTA) as a marker for the liquid phase. The transit time for the Cr-EDTA marker was 6.9 h ± 0.5 SE (range 4.5–8 h, n= 7), while 80% of the polyethylene markers appeared in the colon after 17.6 h ± 1.0 SE (range 14–21.5 h, n= 6) and were sometimes retained in the colon for several hours before defecation. These transit times did not change significantly (P > 0.05) in response to repetitive diving over a period of 8 h. This indicates that the often-used Cr-EDTA is not a good measure for digesta passage time when used alone in seals, and that the hypothesis of Krockenberger and Bryden is most likely wrong. Received: 17 December 1997 / Accepted: 4 May 1998  相似文献   

11.
Evaluation of four survey methods for estimating elephant densities   总被引:1,自引:0,他引:1  
Aerial sample survey, foot survey, vehicle survey, dry-season droppings count and wet-season droppings count were used for estimating elephant (Loxodonta africana africana) densities on the Nazinga Game Ranch, Burkina Faso and evaluated against the results of an aerial total count. Results of all survey techniques except the dry-season dropping count method had low accuracies relative to the aerial total count. It is concluded that the droppings count method was the best and most cost-effective survey technique available for estimation of elephant densities.  相似文献   

12.
Currently, there are three recognized ecotypes (or species) of killer whales (Orcinus orca) in Antarctic waters, including type B, a putative prey specialist on seals, which we refer to as “pack ice killer whale” (PI killer whale). During January 2009, we spent a total of 75.4 h observing three different groups of PI killer whales hunting off the western Antarctic Peninsula. Observed prey taken included 16 seals and 1 Antarctic minke whale (Balaenoptera bonaerensis). Weddell seals (Leptonychotes weddellii) were taken almost exclusively (14/15 identified seal kills), despite the fact that they represented only 15% of 365 seals identified on ice floes; the whales entirely avoided taking crabeater seals (Lobodon carcinophaga; 82% relative abundance) and leopard seals (Hydrurga leptonyx; 3%). Of the seals killed, the whales took 12/14 (86%) off ice floes using a cooperative wave‐washing behavior; they produced 120 waves during 22 separate attacks and successfully took 12/16 (75%) of the Weddell seals attacked. The mean number of waves produced per successful attack was 4.1 (range 1–10) and the mean attack duration was 30.4 min (range 15–62). Seal remains that we examined from one of the kills provided evidence of meticulous postmortem prey processing perhaps best termed “butchering.”  相似文献   

13.
We analyzed eight nuclear microsatellite loci in three species of Antarctic seals; Weddell seal (Leptonychotes weddellii; mean N = 163), crabeater seal (Lobodon carcinophaga; 138) and Ross seal (Ommatophoca rossii; 35). We estimated genetic diversity (Θ) and effective population size (N E) for each species. Autosomal microsatellite based N E estimates were 151,200 for Weddell seals, 880,200 for crabeater seals, and 254,500 for Ross seals. We screened one X-linked microsatellite (Lw18), which yielded similar N E estimates to the autosomal loci for all species except the Ross seals, where it was considerably larger (~103 times). Microsatellite N E estimates were comparable with previously published N E estimates from mitochondrial DNA, but both are substantially lower than direct estimates of population size in all species except the Ross seals. The ratio of maternally versus biparentally derived estimates of N E for Ross seals was not consistent with the hypothesis that they are a polygynous species. We found no sign of a recent, sustained genetic bottleneck in any of the species.  相似文献   

14.
Two adult female leopard seals (Hydrurga leptonyx) were tagged with satellite-linked dive recorders off Queen Maud Land, Antarctica, just after moulting in mid-February. The transmitters transmitted for 80 and 220 days, respectively. Both seals remained within the pack ice relatively close to the Antarctic Continent until early May, when contact was lost with one seal. The one remaining seal then migrated north, to the east side of the South Sandwich Islands in 3 weeks, whereafter it headed east, until contact was lost at 55°S in early September. From mid-May to late September this animal always stayed close to the edge of the pack ice. Both seals made mostly short (<5 min) dives to depths of 10–50 m and only occasionally dove deeper than 200 m, the deepest dive recorded being 304 m. A nocturnal diving pattern was evident in autumn and early winter, while day-time diving prevailed in mid-winter. Haul out probability was highest at mid-day (about 40% in late February and more than 80% in March and April). From May till September the remaining animal mainly stayed at sea, in the vicinity of the pack ice, with only occasional haul outs. These data suggest that a portion of the adult leopard seals may spend the winter mainly in open water, off the edge of the pack ice, where they primarily hunt near the surface. In that case, it is likely that krill (Euphausia superba), as well as penguins, young crabeater seals (Lobodon carcinophaga) and a variety of fish are important prey items.  相似文献   

15.
The diets and trophic interactions among Weddell, crabeater, Ross, and leopard seals in the eastern Ross Sea, Antarctica, were investigated by the use of stable isotope techniques during the 1999–2000 summer seasons. The 13C and 15N values in seal serum clearly distinguished the three Antarctic pack-ice seal species at different trophic positions (Weddell>Ross>crabeater). These patterns appeared to reflect a close linkage to their known foraging ecology and diving behaviors, and agreed well with their presumed dietary diversity. The more enriched 13C and 15N values in male Weddell seals than those in females suggested differences in foraging preferences between them. Significant differences in 15N were also found among different age groups of Weddell seals. A strong correlation between the C:N ratios and serum cholesterol was probably due to extremely high cholesterol levels in phocids. Comparisons of isotope data with harbor seals revealed distinct differences between Antarctic phocids and the northern seal species.  相似文献   

16.
The analysis of prey overlap among Weddell, Antarctic fur and leopard seals was conducted using fecal samples collected at the Danco Coast, Antarctic Peninsula, in 1998 and 2000. The re-occurrence of prey species was moderate in samples collected in 1998, and low in 2000, and reflects resource partitioning among seal species. Prey species that mostly co-occurred in seals’ diet were the Antarctic krill Euphausia superba, bivalves, and the myctophids Gymnoscopelus nicholsi and Electrona antarctica. A dietary similarity index of prey overlap has been calculated and demonstrates evident fluctuations in pairwise comparisons between the seal species. The highest and lowest values of prey overlap were observed between Antarctic fur seals and leopard seals, and between Weddell seals and leopard seals, respectively. Prey overlap between Antarctic fur seals and Weddell seals was moderate in both seasons.  相似文献   

17.
Data on the timing of pupping by the three species of phocid that breed on the Antarctic pack-ice (crabeater, Ross and leopard seals) are limited. Better information would improve our understanding of these species' population and reproductive ecologies, and could facilitate planning and design of population surveys. Observations of the presence or absence of pups with adults during numerous voyages of the Australian National Antarctic Research Expeditions to East Antarctica during spring and early summer months are analysed and presented. The earliest sighting in any year of a crabeater pup accompanied by an adult was on 2 October and the latest sighting on 15 December. The ratio of crabeater pups to adults increased rapidly during the 10-day period 16–25 October, implying a pulse of births over this time. Ross seal pups with an accompanying adult were sighted between 24 October and 22 November, with a peak in the pup-adult ratio occurring in the period 6–15 November. Leopard seal pups were sighted between 8 November and 25 December, with the pup-adult ratio relatively constant during this period. The data provide circumstantial evidence that the maximum durations of lactation reported in the literature for the three species may be over-estimates. If lactation is shorter than reported, asynchrony in the timing of pupping, either among or within years, is implied.  相似文献   

18.
19.
Abstract

On 23 November 1976 we found a 270-cm-long leopard seal, Hydrurga leptonyx (de Blainville), resting on rocks 4 m from a 20 × 30-m pool in Seal Cove, on the east side of Main Island, The Snares.  相似文献   

20.
An Overview of the Ecology of Antarctic Seals   总被引:3,自引:0,他引:3  
Four species of seals occupy the pack-ice region of the oceanssurrounding the Antarctic Continent. These seals include thecrabeater (Lobodon cardnophagus), leopard (Hydrurga leptonyx),weddell (Leplonychotes weddellii), and ross (Ommatophoca rossii),and are true seals with special adaptations for living in thepack-ice region. Two other seal species, the southern elephantseal (Mirounga leonina) and the fur seal (Arctocephalus gazella)(the only eared seal of this region) generally occur furtherto the north and use land rather than ice during the periodof birth of young. This paper reviews the status of these species,and examines the generalecology of the four species that inhabitthe pack-ice zone. In general, the four species that occupythe pack-ice zone have specialized in habitats and habits sothat little overlap in dietsor habitat use exist among thesespecies. The exception is the interaction between the leopardand the crabeater which occupy the same regions and eat krill(Euphausia superba), particularly during the winter. The impactof the potential harvest of krill by man on these species isdiscussed. Further, the impact that recovery of the large baleenwhales that feedin this region during the summer is discussedwith regard to the changes that might occur as competition forkrill by the large vertebrate species increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号