首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated levels of fetal γ-globin can cure disorders caused by mutations in the adult β-globin gene. This clinical finding has motivated studies to improve our understanding of hemoglobin switching. Unlike humans, mice do not express a distinct fetal globin. Transgenic mice that contain the human β-globin locus complete their fetal-to-adult hemoglobin switch prior to birth, with human γ-globin predominantly restricted to primitive erythroid cells. We established humanized (100% human hemoglobin) knock-in mice that demonstrate a distinct fetal hemoglobin (HbF) stage, where γ-globin is the dominant globin chain produced during mid- to late gestation. Human γ- and β-globin gene competition is evident around the time of birth, and γ-globin chain production diminishes in postnatal life, with transient production of HbF reticulocytes. Following completion of the γ- to-β-globin switch, adult erythroid cells synthesize low levels of HbF. We conclude that the knock-in globin genes are expressed in a pattern strikingly similar to that in human development, most notably with postnatal resolution of the fetal-to-adult hemoglobin switch. Our findings are consistent with the importance of BCL11A in hemoglobin switching, since removal of intergenic binding sites for BCL11A results in human γ-globin expression in mouse definitive erythroid cells.  相似文献   

2.
3.
Summary This paper examines the possibility that the linkage arrangements and regulatory properties of genes may be influenced by selection. A mathematical hypothesis is developed in order to show how selective properties of hemoglobin beta chains could have influenced the linkage and regulation of their structural genes. The hypothesis is applied to the case of mouse hemoglobin beta chains. In most mice, closely-linked pairs of loci (doublets) code for two structurally divergent beta chains in unequal amounts. Some mouse strains have singlet alleles, however, coding for another beta chain variant. With the mathematical hypothesis, one can show that selectively determined evolutionary potentials may have favored changes in proportions of major and minor chains produced by a doublet allele. In the extreme case, zero production of the minor chain may give a selective advantage, leading to a ringlet; conversely, selection may favor linking another gene to the singlet locus to give a doublet. A specific prediction of the model is the stable maintenance under certain conditions of multiple alleles at regulatory loci. The concept of evolutionary potential thus suggests that selection could have influenced the evolution of genotypic fitnesses, in addition to causing changes in gene frequencies as in standard population genetics models.  相似文献   

4.
A "fetal hemoglobin' has been reported to exist during mouse gestation, Investigations using CMC chromatography, starch gel electrophoresis or isoelectric focusing have shown a hemoglobin band from fetal tissues, and blood was obtained which was different from the adult hemoglobin and designated a "fetal hemoglobin'. In the current study isoelectric focusing was used to study the hemoglobins existing in the tissues and blood during fetal and neonatal development and the results suggest there is no "fetal hemoglobin' present during gestation. It appears that the hemoglobin designated as "fetal' in our laboratory was a methemoglobin formed by an incomplete reaction of KCN with the hemoglobin. The additional hemoglobin bands which were obtained from fetal liver or neonatal spleen tissues appeared to be a modified adult hemoglobin.  相似文献   

5.
Using isoelectric focusing, a fetal hemoglobin was found in the peripheral blood of C57BL/6 fetal mouse during the 14 to 20 days gestational period. In acid-urea polyacrylamide gel the pattern of this fetal hemoglobin was different from that of the adult hemoglobin. The mouse fetal hemoglobin was differentiated from the mouse adult hemoglobin by immunodiffusion reaction. It suggests that there is a transient fetal hemoglobin in the C57BL/6 mouse during gestational age.  相似文献   

6.
7.
8.
We show here that the alpha, beta, and gamma isotypes of peroxisome proliferator-activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARalpha and beta expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARalpha, beta, and gamma mutant mice, we demonstrate that PPARalpha and beta are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARalpha is mainly involved in the early inflammation phase of the healing, whereas PPARbeta is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARbeta mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARalpha and beta in adult mouse epidermal repair.  相似文献   

9.
Human fetal erythroid x murine erythroleukemia cell hybrids undergo human fetal (gamma) to adult (beta) globin gene switching in vitro under the control of a mechanism located on human chromosome 11. We investigated whether this mechanism acts in cis or in trans by preparing hybrid cells containing marked fragments of the gamma and beta genes known to switch in transgenic mice. In these cells the chromosomally introduced human globin locus undergoes the fetal to adult globin gene switch. In contrast, the marked globin gene fragments were expressed at all stages of hybrid development. These results suggest that either the mechanism of switching acts in cis or that sequences present in the chromosomal globin locus but missing from the transfected globin gene fragments mediate its action.  相似文献   

10.
11.
12.
13.
14.
Changes in Leydig cell gene expression during development in the mouse   总被引:7,自引:0,他引:7  
Developmental changes in the expression of 18 Leydig cell-specific mRNA species were measured by real-time polymerase chain reaction to partially characterize the developmental phenotype of the cells in the mouse and to identify markers of adult Leydig cell differentiation. Testicular interstitial webs were isolated from mice between birth and adulthood. Five developmental patterns of gene expression were observed. Group 1 contained mRNA species encoding P450 side chain cleavage (P450(scc)), P450(c17), relaxin-like factor (RLF), glutathione S-transferase 5-5 (GST5-5), StAR protein, LH receptor, and epoxide hydrolase (EH); group 2 contained 3beta-hydroxysteroid dehydrogenase (3beta-HSD) VI, 17beta-hydroxysteroid dehydrogenase (17beta-HSD) III, vascular cell adhesion molecule 1, estrogen sulfotransferase, and prostaglandin D (PGD)-synthetase; group 3 contained patched and thrombospondin 2 (TSP2); group 4 contained 5alpha-reductase 1 and 3alpha-hydroxysteroid dehydrogenase; group 5 contained sulfonylurea receptor 2 and 3beta-HSD I. Group 1 contained genes that were expressed in fetal and adult Leydig cells and which increased in expression around puberty toward a maximum in the adult. Group 2 contained genes expressed only in the adult Leydig cell population. Group 3 contained genes with predominant fetal/neonatal expression in the interstitial tissue. Group 4 contained genes with a peak of expression around puberty, whereas genes in group 5 show little developmental change in expression. Highest mRNA levels in descending order were RLF, P450(c17), EH, 17beta-HSD III, PGD-synthetase, GST5-5, and P450(scc). Results identify five genes expressed in the mouse adult Leydig cell population, but not in the fetal population, and one gene (TSP2) that may be expressed only in the fetal Leydig cell population. The developmental pattern of gene expression suggests that three distinct phases of adult Leydig cell differentiation occur.  相似文献   

15.
16.
17.
18.
19.
A fetal antigen was detected by immunofluorescence on fetal erythrocytes of mice. The expression of this antigen decreases rapidly after birth and is no longer detectable 48 days later. Another antigen, called immature erythrocyte antigen, was detected on immature erythrocytes and appeared to be lost during cell maturation. The number of cells expressing this antigen reflects the mean age of the erythron at a given time. From the kinetics of variation of these antigens, it was concluded that: (1) The first cells lacking the embryonic antigen (adult cells?) were detected at birth; and (2) immature cells bearing the embryonic antigen were still produced after birth. The presence of this embryonic antigen before and after birth allows us to postulate the existence of a fetal erythropoiesis as observed in other species, although fetal hemoglobin has not been clearly demonstrated in the mouse.  相似文献   

20.
The giant protein titin, a major contributor to myocardial mechanics, is expressed in two main cardiac isoforms: stiff N2B (3.0 MDa) and more compliant N2BA (>3.2 MDa). Fetal hearts of mice, rats, and pigs express a unique N2BA isoform ( approximately 3.7 MDa) but no N2B. Around birth the fetal N2BA titin is replaced by smaller-size N2BA isoforms and N2B, which predominates in adult hearts, stiffening their sarcomeres. Here we show that perinatal titin-isoform switching and corresponding passive stiffness (STp) changes do not occur in the hearts of guinea pig and sheep. In these species the shift toward "adult" proportions of N2B isoform is almost completed by midgestation. The relative contributions of titin and collagen to STp were estimated in force measurements on skinned cardiac muscle strips by selective titin proteolysis, leaving the collagen matrix unaffected. Titin-based STp contributed between 42% and 58% to total STp in late-fetal and adult sheep/guinea pigs and adult rats. However, only approximately 20% of total STp was titin based in late-fetal rat. Titin-borne passive tension and the proportion of titin-based STp generally scaled with the N2B isoform percentage. The titin isoform transitions were correlated to a switch in troponin-I (TnI) isoform expression. In rats, fetal slow skeletal TnI (ssTnI) was replaced by adult carciac TnI (cTnI) shortly after birth, thereby reducing the Ca2+ sensitivity of force development. In contrast, guinea pig and sheep coexpressed ssTnI and cTnI in fetal hearts, and skinned fibers from guinea pig showed almost no perinatal shift in Ca2+ sensitivity. We conclude that TnI-isoform and titin-isoform switching and corresponding functional changes during heart development are not initiated by birth but are genetically programmed, species-specific regulated events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号