首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Radiation inactivation analysis gave the target sizes of 176 +/- 5 kDa and 275 +/- 33 kDa for ATPase from anaerobic Lactobacillus casei and aerobic Micrococcus luteus bacteria respectively. The values are close to the known molecular masses of the enzymes. Thus, to function the L. casei ATPase, like the F1-ATPases, requires a complete structure composed of all the enzyme subunits. L. casei ATPase is inhibited by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole owing to modification of an amino acid residue(s) with pK greater than 8.5. L. casei ATPase consists of six identical subunits and differs from alpha 3 beta 3 gamma delta epsilon-type F1-ATPases in a number of catalytic properties. Namely, ATP hydrolysis under the 'unisite' conditions proceeds at a relatively high rate suggesting the absence of cooperative interactions between the catalytic sites. Contrary to mitochondrial F1-ATPase. L. casei ATPase does not form an inactive complex with ADP. These findings imply essential differences in the operating mechanism for L. casei ATPase and F1 ATPase.  相似文献   

2.
In the presence of Mg2+ or Ca2+ the membranes of the anaerobic glycolytic bacterium Lactobacillus casei hydrolyze 0.1-0.2 mumole ATP/min/mg of protein with a pH optimum 6.4. This activity is inhibited by N,N'-dicyclohexylcarbodiimide and is insensitive to oligomycin, ouabain, vanadate and hydroxylamine. A soluble ATPase was isolated and purified from L. casei membranes. The specific activity of this ATPase is 3.0-4.0 mumole ATP/min/mg of protein. The enzyme homogeneity was established by analytical polyacrylamide gel disc electrophoresis and by analytical centrifugation (S20, omega = 12 +/- 0,5). The molecular weight of the enzyme is 270 000. Polyacrylamide gel electrophoresis of ATPase denaturated by 1% SDS and 8 M urea in the presence of SDS revealed one type of subunits with Mr = 43 000. These subunits could not be separated by isoelectrofocusing in polyacrylamide gel in the presence of 8 M urea and migrated as a single peptide with pI at 4.2. The experimental results suggest that the soluble ATPase from L. casei consists of six identical subunits with Mr of 43 000.  相似文献   

3.
An ATPase from anaerobic Lactobacillus casei has been isolated and 100-times purified. The 400 kDa enzyme molecule was found to have a hexagonal structure 10 nm in diameter composed of at least six protein masses. SDS-electrophoresis reveals four or, under certain conditions, five types of subunit, of apparent molecular masses 57 (alpha), 55 (beta), 40 (gamma), 22 (delta) and 14 (epsilon) kDa with stoichiometry of 3 alpha, 3 beta, gamma, delta, epsilon. The following features resembling F1-ATPases from other sources were found to be inherent in the solubilized L. casei ATPase. (i) Detachment from the membrane desensitizes ATPase to low DCCD concentrations and sensitizes it to water-soluble carbodiimide. (ii) Soluble ATPase is inhibited by Nbf chloride and azide, is resistant to SH-modifiers and is activated by sulfite and octyl glucoside, the activating effect being much stronger than in the case of the membrane-bound ATPase. Substrate specificity of the enzyme is also similar to that of other factors F1. Divalent cations strongly activate the soluble enzyme when added at a concentration equal to that of ATP. An excess of Mn2+, Mg2+ or Co2+ inhibits ATPase activity of F1, whereas that of Ca2+ induces its further activation. No other F1-like ATPases are found in L. casei. It is concluded that this anaerobic bacterium possesses a typical F1-ATPase similar to those in mitochondria, chloroplasts, aerobic and photosynthetic eubacteria.  相似文献   

4.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

5.
A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F1 moiety from the Escherichia coli ATP synthase. The halobacterial enzyme was composed of two major (I and II) and two minor subunits (III and IV), whose molecular masses were 87 kDa, 60 kDa, 29 kDa and 20 kDa, respectively. The isoelectric points of these subunits ranged from 4.1 to 4.8, which in the case of the subunits I and II was consistent with the presence of an excess of acidic amino acids (20-22 mol/100 mol). Peptide mapping of subunits I and II denatured with sodium dodecyl sulfate showed no relationship between the primary structures of the individual halobacterial subunits or similarities to the subunits of the F1 ATPase from E. coli. Trypsin inactivation of the halobacterial ATPase was accompanied by the partial degradation of the major subunits. This observation, taken in conjunction with molecular masses of the subunits and the native enzyme, was consistent with the previously proposed stoichiometry of 2:2:1:1. These results suggest that H. saccharovorum, and possibly, halobacteria in general, possess an ATPase which is unlike the ubiquitous F0F1 ATP synthase.  相似文献   

6.
Subunit composition of vacuolar membrane H(+)-ATPase from mung bean   总被引:11,自引:0,他引:11  
The vacuolar H(+)-ATPase from mung bean hypocotyls was solubilized from the membrane with lysophosphatidycholine and purified by QAE-Toyopearl column chromatography. The purified ATPase was active only in the presence of exogenous phospholipid and was inhibited by nitrate, dicyclohexyl carbodiimide and Triton X-100, but not by vanadate or azide. Dodecyl sulfate/polyacrylamide gel electrophoresis of the purified ATPase yielded ten polypeptides of molecular masses of 68 kDa, 57 kDa, 44 kDa, 43 kDa, 38 kDa, 37 kDa 32 kDa, 16 kDa, 13 kDa and 12 kDa. All polypeptides remained in the peak activity fraction after glycerol density gradient centrifugation. Nine of them, excluding the 43-kDa polypeptide, comigrated in a polyacrylamide gradient gel in the presence of 0.1% Triton X-100. The 16-kDa polypeptide could be labeled with [14C]dicyclohexylcarbodiimide. The amino-terminal amino acid sequence of the isolated 68-kDa polypeptide generally agreed with that deduced from the cDNA for the carrot 69-kDa subunit [Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H. & Taiz, L. (1988) J. Biol. Chem. 263, 9102-9112]. Thus, mung bean vacuolar H(+)-ATPase seems to consist of nine distinct subunits.  相似文献   

7.
An N-ethylmaleimide-sensitive ATPase was purified 100-fold from chromaffin granule membranes. The purification procedure included solubilization with polyoxyethylene 9 lauryl ether, chromatography on hydroxylapatite and DEAE-cellulose columns, and glycerol gradient centrifugations. Inclusion of phosphatidylserine and a mixture of protease inhibitors during the purification procedure was necessary to maintain the activity of the preparation. The purified preparation contained four major polypeptides with molecular masses of about 115, 72, 57, and 39 kDa, which were copurified with the ATPase activity. The 115-kDa subunit binds [14C]dicyclohexylcarbodiimide and the subunits of 115 and 39 kDa bind [14C]N-ethylmaleimide. The ATP-dependent proton uptake activity of chromaffin granule membranes is inhibited 50% with about 20 microM N-ethylmaleimide, while over 5 mM concentrations of the inhibitor were required to block the ATPase activity of the membranes. The ATPase activity of the purified enzyme was inhibited via two different affinities: a high affinity site with a Ki in the microM range and a low affinity site in the mM range, each contributing to about 50% inhibition of the enzyme. It is concluded that the proton-ATPase of chromaffin granule membranes contains at least four subunits with the 115-kDa polypeptide being the main subunit having the active site for the ATPase activity of the enzyme.  相似文献   

8.
ATPase was purified 51-fold from a chemoautotrophic, obligately acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. The purified ATPase showed the typical subunit pattern of the F1-ATPase on a polyacrylamide gel containing sodium dodecyl sulfate, with 5 subunits of apparent molecular masses of 55, 50, 33, 20, and 18 kDa. The enzyme hydrolyzed ATP, GTP, and ITP, but neither UTP nor ADP. The K(m) value for ATP was 1.8 mM. ATPase activity was optimum at pH 8.5 at 45 degrees C, and was activated by sulfite. Azide strongly inhibited the enzyme activity, whereas the enzyme was relatively resistant to vanadate, nitrate, and N,N'-dicyclohexylcarbodiimide. The genes encoding the subunits for the F1F(O)-ATPase from A. ferrooxidans NASF-1 were cloned as three overlapping fragments by PCR cloning and sequenced. The molecular masses of the alpha, beta, gamma, delta, and epsilon subunits of the F1 portion were deduced from the amino acid sequences to be 55.5, 50.5, 33.1, 19.2, and 15.1 kDa, respectively.  相似文献   

9.
A quinol-cytochrome c oxidoreductase (cytochrome bc1 complex) has been purified from plasma membranes of a thermophilic Bacillus, PS3, by ion-exchange chromatography in the presence of Triton X-100. The purified enzyme shows absorption bands at 561-562 nm and 553 nm at room temperature, and 560, 551, and 547 nm at 80 K upon reduction, and gives an ESR signal similar to that of a Rieske-type iron sulfur center. Its contents of protohemes, heme c, and non-heme iron are about 23, 10, and 21 nmol/mg of protein, respectively. The enzyme consists of four polypeptides with molecular masses of 29, 23, 21, and 14 kDa judging from their electrophoretic mobilities in the presence of sodium lauryl sulfate. Since the staining intensities of the respective bands are almost proportional to their molecular masses, the monomer complex (87 kDa) of the subunits probably consists of a cytochrome b having two protohemes, a cytochrome c1 and an Fe2-S2-type iron sulfur center. The 29 and 21 kDa subunits were identified as cytochromes c1 and b, respectively, and the 23-kDa subunit is probably an iron-sulfur protein, since the 14-kDa polypeptide can be removed with 3 M urea without reducing the content of non-heme iron. Several characteristics of the subunits and chromophores indicate that the PS3 enzyme is rather similar to cytochrome b6f (a bc1 complex equivalent) of chloroplasts and Cyanobacteria. The PS3 complex catalyzes reduction of cytochrome c with various quinol compounds in the presence of P-lipids and menaquinone. The turnover number at pH 6.8 was about 5 s-1 at 40 degrees C and 50 s-1 at 60 degrees C. The enzyme is heat-stable up to 65 degrees C.  相似文献   

10.
F0F1-ATPase of plant mitochondria: isolation and polypeptide composition   总被引:1,自引:0,他引:1  
A simple and high yield purification procedure for the isolation of F0F1-ATPase from spinach leaf mitochondria has been developed. This is the first report concerning purification and composition of the plant mitochondrial F0F1-ATPase. The enzyme is selectively extracted from inner membrane vesicles with the zwitterionic detergent, 3-[(3-cholamidopropyl) dimethyl ammonio]-1- propane sulfonate (CHAPS). The purified enzyme exhibits a high oligomycin-sensitive ATPase activity (3,6 mumol.min-1.mg-1). SDS-PAGE of the purified F0F1-ATPase complex reveals protein bands of molecular masses of 54 kDa (F1 alpha,beta), 33 kDa (F1 gamma), 28 kDa, 23 kDa, 21 kDa (F1 delta), 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa (F1 epsilon) and 8.5 kDa. All polypeptides migrate as one complex in a polyacrylamide gradient gel under non-denaturing conditions in the presence of 0.1% Triton X-100. Five polypeptides could be identified as subunits of F1. Polypeptides of molecular masses 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa constitute the F0 part of the complex. Our results show that polypeptide composition of the plant mitochondrial F0 differs from other eukaryotic F0 of yeast, mammals and chloroplasts.  相似文献   

11.
The nucleotide sequence of the operon of the ATPase complex of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, has been determined. In addition to the three previously reported genes for the alpha, beta, and c (proteolipid) subunits of the ATPase complex (Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 7119-7121), the operon contained three other genes encoding hydrophilic proteins with molecular masses 25, 13, and 7 kDa. The 25-kDa protein is the third largest subunit (gamma), the 13-kDa protein is most likely the fourth subunit (delta), and the 7-kDa protein may correspond to an unknown subunit of the ATPase, tentatively named as epsilon subunit. They do not have significant sequence similarity to subunits in F0F1-ATPases and eukaryotic V-type ATPases, whereas the other three subunits, alpha, beta, and c, have homologous counterparts in F0F1- and V-type ATPases. The order of the genes in the operon was delta alpha beta gamma epsilon c. The S. acidocaldarius ATPase operon differed from the eucabacterial F0F1-ATPase operon in that the former contains only one gene for a hydrophobic subunit at the most downstream part of the operon whereas the latter has three hydrophobic F0 genes preceding five hydrophilic F1 genes.  相似文献   

12.
Human liver alpha-D-mannosidases A and B were purified 11 500-fold and 2000-fold respectively. Both showed microheterogeneity when analysed by isoelectric focusing. Alpha-D-Mannosidases A and B are immunologically identical but differ in their range of pI values, molecular masses, uptake into fibroblasts and subunit compositions. Alpha-D-Mannosidase A consists of equimolar proportions of subunits of molecular masses 62 kDa and 26 kDa, which are linked by disulphide bridges in the intact enzyme. Alpha-D-Mannosidase B also contains a small subunit, of molecular mass 26 kDa, and a variable mixture of larger subunits, of molecular masses 58 kDa and 62 kDa. The 62 kDa and 58 kDa subunits, but not the 26 kDa one, contain concanavalin A-recognizing glycans. The 58 kDa subunit has a lower pI, contains less high-mannose glycans but probably contains more mannose 6-phosphate than the 62 kDa subunit. It is postulated that the differences in structure and properties of alpha-D-mannosidases A and B are due to differences in the state of processing of the large subunit. This suggestion is consistent with a single locus on chromosome 19 for lysosomal alpha-D-mannosidase.  相似文献   

13.
The purified tonoplast H+-ATPase from oat roots (Avena sativa L. var. Lang) consists of at least three different polypeptides with masses 72, 60, and 16 kDa. We have used covalent modifiers (inhibitors) and polyclonal antibodies to identify the catalytic subunit of the H+-pumping ATPase. The inactivation of ATPase activity by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (Nbd-Cl, an adenine analog) was protected by MgATP or MgADP, and showed kinetic properties consistent with active site-directed inhibition. Under similar conditions, [14C]Nbd-Cl preferentially labeled the 72-kDa polypeptide of the purified ATPase. This binding was reduced by MgATP or 2' (3')-)O-(2,4,6-trinitrophenyl) ATP. Nbd-Cl probably modified cysteinyl--SH or tyrosyl--OH groups, as dithiothreitol reversed both ATPase inactivation and [14C]Nbd-Cl binding to the 72-kDa subunit. The finding that N-ethylmaleimide inhibition of ATPase activity was protectable by nucleotides is consistent with the idea of sulfhydryl groups in the ATP-binding site. Polyclonal antibody made to the 72-kDa polypeptide specifically reacted (Western blot) with a 72-kDa polypeptide from both tonoplast-enriched membranes and the purified tonoplast ATPase, but it did not cross-react with the mitochondrial or Escherichia coli F1-ATPase. The antibody inhibited tonoplast ATPase and H+-pumping activities. We conclude from these results that the 72-kDa polypeptide of the tonoplast H+-ATPase contains an ATP- (or nucleotide-) binding site that may constitute the catalytic domain.  相似文献   

14.
An energy-transducing adenosine triphosphatase (ATPase, EC 3.6.1.3) that contains an extra polypeptide (delta) as well as three intrinsic subunits (alpha, beta, gamma) was purified from Micrococcus lysodeikticus membranes. The apparent subunit stoichiometry of this soluble ATPase complex is alpha 3 beta 3 gamma delta. The functional role of the subunits was studied by correlating subunit sensitivity to trypsin and effect of antibodies raised against holo-ATPase and its alpha, beta and gamma subunits with changes in ATPase activity and ATPase rebinding to membranes. A form of the ATPase with the subunit proportions 1.67(alpha):3.00(beta:0.17(gamma) was isolated after trypsin treatment of purified ATPase. This form has more than twice the specific activity of native enzyme. Other forms with less relative proportion of alpha subunits and absence of gamma subunit are not active. Of the antisera to subunits, only anti-(beta-subunit) serum shows a slight inhibitory effect on ATPase activity, but its combination with either anti-(alpha-subunit) or anti-(gamma-subunit) serum increases the effect. The results suggest that beta subunit is required for full ATPase activity, although a minor proportion of alpha and perhaps gamma subunit(s) is also required, probably to impart an active conformation to the protein. The additional polypeptide not hitherto described in Micrococcus lysodeikticus ATPase had a molecular weight of 20 000 and was found to be involved in ATPase binding to membranes. This 20 000-dalton component can be equated with the delta subunit of other energy-transducing ATPases and its association with the (alpha, beta, gamma) M. lysodeikticus ATPase complex appears to be dependent on bivalent cations. The present results do not preclude the possibility that the gamma subunit also plays a role in ATPase binding, in which, however, the major subunits do not seem to play a role.  相似文献   

15.
A new isolate of the aceticlastic methanogen Methanothrix thermophila utilizes only acetate as the sole carbon and energy source for methanogenesis (Y. Kamagata and E. Mikami, Int. J. Syst. Bacteriol. 41:191-196, 1991). ATPase activity in its membrane was found, and ATP hydrolysis activity in the pH range of 5.5 to 8.0 in the presence of Mg2+ was observed. It had maximum activity at around 70 degrees C and was specifically stimulated up to sixfold by 50 mM NaHSO3. The proton ATPase inhibitor N,N'-dicyclohexylcarbodiimide inhibited the membrane ATPase activity, but azide, a potent inhibitor of F0F1 ATPase (H(+)-translocating ATPase of oxidative phosphorylation), did not. Since the enzyme was tightly bound to the membranes and could not be solubilized with dilute buffer containing EDTA, the nonionic detergent nonanoyl-N-methylglucamide (0.5%) was used to solubilize it from the membranes. The purified ATPase complex in the presence of the detergent was also sensitive to N,N'-dicyclohexylcarbodiimide, and other properties were almost the same as those in the membrane-associated form. The purified enzyme revealed at least five kinds of subunits on a sodium dodecyl sulfate-polyacrylamide gel, and their molecular masses were estimated to be 67, 52, 37, 28, and 22 kDa, respectively. The N-terminal amino acid sequences of the 67- and 52-kDa subunits had much higher similarity with those of the 64 (alpha)- and 50 (beta)-kDa subunits of the Methanosarcina barkeri ATPase and were also similar to those of the corresponding subunits of other archaeal ATPases. The alpha beta complex of the M. barkeri ATPase has ATP-hydrolyzing activity, suggesting that a catalytic part of the Methanothrix ATPase contains at least the 67- and 52-kDa subunits.  相似文献   

16.
The latent coupling factor (F1)-ATPase of Micrococcus lysodeikticus has been purified to homogeneity as determined by a number of criteria including, nondenaturing polyacrylamide gel electrophoresis, crossed immunoelectrophoresis and analytical ultracentrifugation. By inclusion of 1 mM phenylmethyl sulfonyl fluoride, a serine protease inhibitor, in the shock-wash step of release of F1 from the membranes, the spontaneous activation of both crude and purified ATPase by endogenous membrane protease(s) can be prevented, thereby yielding a highly latent ATPase preparation. Equilibrium ultracentrifugation of the latent ATPase gave a molecular weight of 400 000. The ATPase contained five different subunits alpha, beta, gamma, delta, and espsilon and their molecular weights determined by SDS-polyacrylamide gel electrophoresis were 60 000, 54 000, 37 000, 27 000 and 9000, respectively. The subunit composition was determined with 14C-labelled, F1-ATPase prepared from cells grown on medium containing [U-14C]-labelled algal protein hydrolysate. Within the limitations of this method the results tentatively suggest a subunit composition of 3 : 3 : 1 : 1 : 3.  相似文献   

17.
Ubiquinol-cytochrome-c oxidoreductase has been isolated from potato (Solanum tuberosum L.) mitochondria by cytochrome-c affinity chromatography and gel-filtration chromatography. The procedure, which up to now only proved applicable to Neurospora, yields a highly pure and active protein complex in monodisperse state. The molecular mass of the purified complex is about 650 kDa, indicating that potato cytochrome c reductase occurs as a dimer. Upon reconstitution into phospholipid membranes, the dimeric enzyme catalyzes electron transfer from a synthetic ubiquinol to equine cytochrome c with a turnover number of 50 s-1. The activity is inhibited by antimycin A and myxothiazol. A myxothiazol-insensitive and antimycin-sensitive transhydrogenation reaction, with a turnover number of 16 s-1, can be demonstrated as well. The protein complex consists of ten subunits, most of which have molecular masses similar to those of the nine-subunit fungal enzyme. Individual subunits were identified immunologically and spectral properties of b and c cytochromes were monitored. Interestingly, an additional 'core' polypeptide which is not present in other cytochrome bc1 complexes forms part of the enzyme from potato. Antibodies raised against individual polypeptides reveal that the core proteins are clearly immuno-distinguishable. The additional subunit may perform a specific function and contribute to the high molecular mass which exceeds those reported for other cytochrome-c-reductase dimers.  相似文献   

18.
Membrane ATPase of Methanosarcina barkeri was inhibited by N, N'-dicyclohexylcarbodiimide (DCCD), whereas the extrinsic alpha beta complex of the same enzyme was not. Consistent with this finding, a 6,000 dalton (6 kDa) membrane protein was preferentially labeled with radioactive DCCD. The DCCD-sensitive ATPase was solubilized from the membranes with octylglucoside and purified in the presence of this detergent. The purified ATPase contained the alpha and beta subunits and also at least four additional proteins (40, 27, 23 and 6 kDa). The 6 kDa protein in the purified enzyme reacted with DCCD, indicating that it is a subunit of an integral part of the M. barkeri ATPase complex.  相似文献   

19.
The F1 complex of the ATP synthase of Streptomyces lividans was isolated and purified. The procedure involved the solubilization of F1 from membranes with buffer of low ionic strength in the presence of EDTA, ion-exchange chromatography and gel filtration. The purified F1 complex from S. lividans (SLF1) consists of five subunits alpha, beta, gamma, delta and epsilon with molecular masses of 58,000, 50,000, 36,000, 28,000 and 13,000, respectively and exhibits immunological cross-reactivity with the F1 portion purified from Escherichia coli (ECF1). The enzymatic properties of SLF1 were determined by the use of microtiter-plate-based assay and compared with data obtained for ECF1. ATPase activity of SLF1 (specific activity: 20-30 U/mg) was only observed in the presence of high concentrations of Ca2+ (10mM). Stimulation of the ATPase activity by Mg2+ was not detectable; quite to the contrary, Mg2+ inhibited the Ca(2+)-stimulated activity of SLF1. SLF1 was re-bound to F1-stripped membranes of S. lividans, but not to F1-stripped membrane vesicles of E. coli. In contrast, ECF1 could be cross-reconstituted with F1-stripped membranes of S. lividans; however, a structural but not a functional reconstitution of the hybrid F1Fo complex was observed.  相似文献   

20.
Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli   总被引:35,自引:0,他引:35  
The H+-ATPase (F1F0) of Escherichia coli was purified from cells labeled with either [35S]sulfate or [U-14C-D] glucose, and the molar ratio of subunits in the complex determined. The molar ratio was calculated from the radioactivity incorporated into each subunit, using either the subunit sulfur content or subunit molecular weight. These labeling experiments confirm an alpha 3 beta 3 gamma 1 delta 1 epsilon 1 ratio of subunits in F1, and indicate a chi 1 psi 2 omega 10 ratio of subunits in F0. The chi, psi, and omega designations used here refer to the subunits of F0 in order of decreasing molecular weight. Staining with Coomassie brilliant blue gave a reliable indication of the molar ratio of subunits in F1, but very erroneous values for each of the subunits of F0. We attempted to estimate the ratio of subunits in the native membrane, since the stoichiometry determined for the purified complex could be an anomaly of purification. These estimates were made after labeling cells with [35S]sulfate during amplification of the ATPase genes carried on a lambda transducing phage. The subunit ratios in the native membrane were reasonably close to those obtained with purified F1F0. We conclude that the stoichiometry determined reflects the composition of F1F0 in the native membrane. The most surprising conclusion from this study is that there are 10 +/- 1 omega ("proteolipid") subunits in each F1F0 complex. This is considerably more than had been assumed previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号