首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predation by Bdellovibrio-like organisms (BLOs) results in bacterial community succession in aquatic ecosystems. The effects of nutrient loading on the distribution and phylogeny of BLOs remain largely unknown. To this end, we present our findings on BLO diversity from four north-Indian lakes that are variable in their trophic status; Nainital is eutrophic, both, Bhimtal and Naukuchiatal are mesotrophic and Sattal remains oligotrophic, respectively. Initially, total heterotrophic bacteria and BLOs were quantified by most probable number (MPN) analyses using Pseudomonas putida and Escherichia coli as prey bacteria. Total bacterial numbers were at least two-logs higher in the eutrophic lake samples compared with oligotrophic lake. Similarly, BLO numbers were approximately 39-fold higher using Pseudomonas sp., which is likely the preferred prey within these lakes. Conversely, significant differences were not observed between mesotrophic and oligotrophic BLO numbers when E. coli was used as the prey. PCR-RFLP of small subunit rDNA (SSU rDNA) of BLOs, followed by cloning, sequencing, and taxonomic categorization revealed distinct differences such that, eutrophic lake consisted of higher BLO diversity compared with mesotrophic and oligotrophic lake, most likely due to both, higher numbers and availability of a diverse population of prey bacteria resulting from nutrient loading in this ecosystem.  相似文献   

2.
Phytoplankton structure in different lake types in central Finland   总被引:2,自引:0,他引:2  
Pertti Eloranta 《Ecography》1986,9(3):214-224
Phyloplankton structure and its relation to physical and chemical properties of the water was studied in 58 central Finnish lakes. The biomass ranged from 0.2 to 14.2 g m−3 and the number of taxa per sample ranged from 33 to 152. The lakes were grouped into 5 types according to their trophic state: eutrophic, dyseutrophic, mesotrophic, oligotrophic, and acid oligotrophic lakes. The average biomass in eutrophic lakes was 5.57 g m−3, in dyseutrophic 3.54 g m−3, 1.23 g m−3 in mesotrophic, 0.52 g m−3 in oligotrophic and 0.39 g −3 in acid oligotrophic lakes. The average number of taxa per sample in the corresponding lake types were 109. 1, 79.3, 97.9, 90.9 and 43.8, respectively. The phytoplankton communities in eutrophic lakes were characterized by blue-green algae (21.2% of total biomass) and green algae (18.7% of total biomass). In dyseutrophic lakes the proportion of green algae was much smaller (7.2% of total biomass) than in eutrophic lakes, whereas the proportion of diatoms and cryptophytes was higher (28.2 and 20.4% of total biomass, respectively). Chrysophytes dominated in the oligotrophic and mesotrophic lakes (27.3–39.9% of total biomass). The contribution of dinoflagellates to the total biomass was highest in the most oligotrophic acidified lakes and in those lakes the relative proportions of blue-green and green algae were much higher than in the typical oligotrophic lakes. The lakes were also grouped into 8 community types according to the dominating algal group. Cyanophyceae- and Chlorophyceae-types characterized the eutrophic lakes, whereas Chrysophyceae-Dinopheceae-type was typical for most oligotrophic lakes. The other 5 types occurred in mesotrophic and oligotrophic lakes but the physical and chemical properties of these lakes did not differ much.  相似文献   

3.
The aim of this study was to examine whether littoral nematode community patterns are shaped by lake trophic state. It was hypothesized that trophic level is associated negatively with the proportion of omnivores and positively with the percentages of bacterial feeders, but not at all with the diversity, abundance, and biomass of freshwater nematodes. Sediment samples were taken at littoral sites of eight southern Swedish lakes of different trophy in spring and autumn 2007. Trophic level was found to strongly influence species richness, as oligotrophic and mesotrophic lakes supported the greatest species numbers, whereas nematode abundance, biomass, and Shannon index were unaffected. Furthermore, our results indicated effects on the nematode community’s trophic structure, with a larger proportion of predatory nematodes in oligotrophic and mesotrophic lakes but no differences in the other feeding types (bacteria, algae and suction feeders, omnivorous species). Multivariate analysis indicated a shift in species compositions along the threshold from mesotrophic to eutrophic conditions, with the presence of Tobrilus gracilis, Monhystera paludicola, Brevitobrilus stefanskii, and Ethmolaimus pratensis related to the latter. Nematode communities in oligotrophic and mesotrophic lakes were characterized by a similar species composition, with pronounced occurrences of Eumonhystera longicaudatula, Semitobrilus cf. pellucidus, Prodesmodora circulata, and Rhabdolaimus terrestris. Overall, the results suggested that lake trophic state is a major factor structuring littoral nematode communities, although intra-lake variations might be of importance as well.  相似文献   

4.
Key features of photosynthetic picoplankton populations were compared during 1988 in ten lakes in northern England ranging from oligotrophic to slightly eutrophic; two of the three eutrophic lakes were shallow and lacked a thermocline. Measurements were made at 0.5 m depth of temperature, total chlorophyll a, chlorophyll-containing picoplankton cell density, mean picoplankton cell volume and percentage of phycoerythrin-rich cells in the total picoplankton population. All lakes showed maxima for total chlorophyll concentration and picoplankton cell density in mid- to late summer. The maximum value for picoplankton density ranged from 3.4 × 103 (Esthwaite Water) to 1.3 × 106 cells ml−1 (Ennerdale Water). There was a significant negative relationship (p < 0.05) between log10 of maximum picoplankton cell density and maximum total chlorophyll, the latter being taken as an indicator of lake trophic status. The ratio of maximum to minimum picoplankton density during the year in a particular lake ranged from 39 to 2360 and showed no obvious relationship to lake type. Overall, the seasonal range in picoplankton density was about one order of magnitude greater than the range in total chlorophyll a, but there were considerable differences between lakes. Phycoerythrin-rich picoplankton as a percentage of total picoplankton reached a maximum in summer in all lakes. Values were always very low (<5%) in the two shallow eutrophic lakes, but reached 97% and over in the four most oligotrophic lakes. In two of the oligotrophic lakes, Wast-water and Ennerdale Water, phycoerythrin-rich picoplankton was a major component of the summer phytoplankton biomass.  相似文献   

5.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

6.
7.
The role of meiobenthos in lake ecosystems   总被引:1,自引:0,他引:1  
It is shown that meiobenthos plays an important role in the secondary production by zoobenthos in lakes, as well as in the degradation of organic matter. In large lakes (Lake Ladoga, Lake Onega, Lake Päijänne, Lake Constance), the ratio of meiobenthic production to the production of macrobenthos is on average 50–61%. In the small Latgalian lakes (Latvia), this proportion is different: in the profundal of these lakes it varies from 92.5% in a naturally clean mesotrophic lake to 0.0004% in the most eutrophic lake, and in the littoral of lakes – from 578–1476% in mesotrophic lakes to 148–306% in eutrophic ones. The level of production of littoral meiobenthos does not depend on the trophic status of the lake, and can be equally high both in undisturbed mesotrophic lakes and in strongly eutrophicated lakes. The intensity of production of the littoral meiobenthos in oligotrophic and mesotrophic lakes, on the one hand, and in eutrophic lakes on the other, are not reliably distinguished. There is a clear tendency for a decrease of the role of profundal meiobenthos with regard to the transformation of energy flows in lake ecosystems, both with an increase in eutrophication and with an increase in the amount of organic matter in the benthal available from phytoplankton.  相似文献   

8.
Seasonal changes in the biochemistry of lake seston   总被引:3,自引:0,他引:3  
1. The quantity of seston was measured and the elemental carbon, nitrogen and phosphorus (C, N, P) and biochemical composition (carbohydrate, protein, lipid) of the < 53 μm size fraction in three temperate lakes during one year was analysed. The lakes differed in nutrient concentration and were characterized as oligotrophic, mesotrophic and eutrophic. Linear regression analyses defined associations between seston composition and either lake trophic status, depth or season. 2. The concentration of particulate organic seston was greatest during spring and autumn and lowest during the clear water period in early summer. Seasonal patterns in seston elemental and biochemical percentage composition (quality) were observed to be independent of differences in seston quantity. 3. Concentrations of seston C, N and P were high in most cases in the spring and autumn and low in summer. Concentrations of P were particularly high during late summer and early autumn in the metalimnion, perhaps because of recovery of P from anaerobic sediments and hypolimnetic waters. Because seston C and N did not increase as markedly as P, C : P and N : P ratios both declined in the autumn. Primary production was thought to be co-limited by N and P in all three of these lakes; however, the data suggested that N might be more important as a major limiting nutrient in the eutrophic lake as the metalimnion increased in depth in late summer and autumn. 4. Concentrations of protein, carbohydrate, polar lipid and triglyceride generally increased with lake type as expected (greatest in the eutrophic lake), but showed no relationship with water depth. As the year progressed, no significant changes were measured in protein and carbohydrate concentrations; however, the concentration of polar lipid decreased and triglyceride increased significantly with time of year. 5. The biochemical composition of seston varied during the year and among lakes; for example, in Lake Waynewood the proportion of protein composing the seston (percentage protein by weight) varied from < 10% to > 40%. No statistically significant patterns in the percentage protein or carbohydrate were found. However, the proportion of seston comprised of triglyceride decreased with lake type and increased during the year; whereas the proportion of seston as polar lipid increased with lake type and decreased during the year. Triglyceride comprised most of the lipid. Both protein : lipid and protein : carbohydrate ratios tended to be greatest in summer and lowest in the spring and autumn. 6. Relationships between samples and biochemical composition analysed by Canonical Correspondence Analysis (Canoco) indicated similar patterns in seasonal changes in seston biochemistry for the three lakes, with samples separated primarily by vectors for lake type (oligotrophic to eutrophic) and the percentage polar lipid (proportion of total lipid) and secondarily by vectors for date and water depth (epilimnion or metalimnion). 7. These seasonal biochemical changes in the seston food base were compared with biochemical changes known to occur in algae grown under N-or P-limited conditions in the laboratory, and the resultant quality of this algal food for suspension-feeding consumers (zooplankton). It was concluded that zooplankton were likely to be physiologically challenged by these distinct seasonal shifts in the quality of lake seston.  相似文献   

9.
The length–weight relationships of the cyprinid fish Carassius gibelio (Bloch, 1782) are described for the 12 most important lakes of Greece. Carassius gibelio is an allogynogenetic fish species, which was introduced into Greek lakes during the late 1970s. The values of the exponent b of the length–weight relationships ranged from 2.33 to 3.38, and varied with the trophic state of the lake. In eutrophic lakes these b values were significantly (P < 0.001) lower than in oligotrophic or mesotrophic lakes. Relationships between the b values and phosphorus concentrations were logarithmic: b = 1.37–0.13 log (PO4‐P); total length, fork length and standard length were linear (in all cases: r2 > 0.95). In most of the lakes, populations consisted of females, with the exception of Pamvotis, Doirani and Koronia lakes where a small proportion were males.  相似文献   

10.
Seasonal microbial activity in Antarctic freshwater lake sediments   总被引:2,自引:1,他引:2  
Summary Seasonal fluctuations in population numbers and activity were monitored in bottom sediments of oligotrophic Moss Lake, mesotrophic Heywood Lake and eutrophic Amos Lake on Signy Island, South Orkney Islands, during 1976–78. Heywood and Amos Lakes became anoxic under winter ice cover (8–10 months) and significant populations of facultatively anaerobic heterotrophs and sulphate-reducing bacteria developed. In contrast, Moss Lake surface sediments never became anoxic and anaerobic bacteria were virtually absent. Direct microscopic counts and viable plate counts fluctuated relatively little in Moss Lake throughout the study period, whereas distinct seasonality was observed in the more enriched lake systems. Similarly, measurements of oxygen consumption and dark 14CO2 uptake by mud cores indicated no obvious seasonal fluctuations in Moss Lake data, in contrast to the marked seasonal pattern observed in data from the other lakes. In these latter systems, oxygen uptake rates were highest in summer (c. 400 mg O2 m-2 d-1) and virtually undetectable in winter. Comparison of oxygen uptake with oxygen concentration and temperature revealed differences, between lakes, in uptake response to oxygen concentration, whereas uptake response to temperature did not differ significantly between lakes. Chemosynthetic production in the Signy Island lake sediments was in the range 1.6–35.3 g C m-2 (mud surface) d-1 with highest values recorded in Amos Lake under winter ice cover and anoxic conditions. The findings from this and earlier studies of the three lakes have been assembled to indicate the relative importance of green plants and bacteria to the carbon cycle in these permanently cold systems.  相似文献   

11.
Relationships between environmental factors and bacterial communities were investigated in 41 freshwater lakes located in mountainous regions of eastern Japan. Bacterioplankton community composition (BCC) was determined by polymerase chain reaction-denaturing gradient gel electrophoresis of the 16S rRNA gene and then evaluated on the basis of physicochemical and biological variables of the lakes. Canonical correspondence analysis revealed that BCC of oligotrophic lakes was significantly influenced by dissolved organic carbon (DOC) content, but its effect was not apparent in the analysis covering all lakes including mesotrophic and eutrophic ones. The generalized linear model showed the negative association of DOC on the taxon richness of bacterioplankton communities. DOC was positively correlated with the catchment area per lake volume, suggesting that a large fraction of DOC supplied to the lake was derived from terrestrial sources. These results suggest that allochthonous DOC has a significant effect on bacterioplankton communities especially in oligotrophic lakes. The genus Polynucleobacter was detected most frequently. The occurrence of Polynucleobacter species was positively associated with DOC and negatively associated with total phosphorus (TP) levels. In addition, TP had a stronger effect than DOC, suggesting that oligotrophy is the most important factor on the occurrence of this genus.  相似文献   

12.
We studied the frequency and composition of potential microcystin (MC) producers in 70 Finnish lakes with general and genus-specific microcystin synthetase gene E (mcyE) PCR. Potential MC-producing Microcystis, Planktothrixand Anabaena spp. existed in 70%, 63%, and 37% of the lake samples, respectively. Approximately two-thirds of the lake samples contained one or two potential MC producers, while all three genera existed in 24% of the samples. In oligotrophic lakes, the occurrence of only one MC producer was most common. The combination of Microcystis and Planktothrix was slightly more prevalent than others in mesotrophic lakes, and the cooccurrence of all three MC producers was most widespread in both eutrophic and hypertrophic lakes. The proportion of the three-producer lakes increased with the trophic status of the lakes. In correlation analysis, the presence of multiple MC-producing genera was associated with higher cyanobacterial and phytoplankton biomass, pH, chlorophyll a, total nitrogen, and MC concentrations. Total nitrogen, pH, and the surface area of the lake predicted the occurrence probability of mcyE genes, whereas total phosphorus alone accounted for MC concentrations in the samples by logistic and linear regression analyses. In conclusion, the results suggested that eutrophication increased the cooccurrence of potentially MC-producing cyanobacterial genera, raising the risk of toxic-bloom formation.  相似文献   

13.
Kufel  Lech 《Hydrobiologia》2001,443(1-3):59-67
Total phosphorus and total nitrogen explained a low percentage of summer chlorophyll variability in epilimnia of the Great Masurian Lakes. Division of the whole data set into two subgroups of lakes improved approximation of the chlorophyll nutrient relationship but revealed also functional differences between the lakes distinguished in that way. Chlorophyll in eutrophic lakes correlated well with nitrogen and phosphorus, that in mesotrophic lakes (those with summer chlorophyll <=22 mg m–3 as calculated in the model) was related to none of the nutrients. Higher summer chlorophyll content in epilimnetic waters was accompanied by higher chl:PP and chl:PN ratios. Algal adaptation to poor light conditions in eutrophic lakes is postulated as a possible reason for that difference.Chlorophyll – nutrient relationships varied with the trophic status of lakes. Epilimnetic chlorophyll strictly followed phosphorus changes in eutrophic lakes but did not do so in mesotrophic ones. Detailed comparison of selected meso- and eutrophic lakes showed marked differences in the seasonal changes of chlorophyll and nutrient concentrations and in sedimentation rates, especially in spring. Nutrient limitation rather than zooplankton grazing is suggested as a possible mechanism of controlling algal abundance and the sequence of spring events in a eutrophic lake. It is hypothesised that phosphorus turnover in eutrophic lakes is dominated by seasonal vertical fluxes, while in mesotrophic lakes it is more conservative with consumption and regeneration restricted mostly to metalimnion. Possible consequences of such conclusion are discussed in the paper.  相似文献   

14.
Eutrophication of Lake Neuchâtel indicated by the oligochaete communities   总被引:2,自引:2,他引:0  
Claude Lang 《Hydrobiologia》1989,174(1):57-65
Lake Neuchâtel (Switzerland), oligotrophic until 1950, was meso-eutrophic in 1980. The relative abundance in worm communities of Peloscolex velutinus and Stylodrilus heringianus was used to monitor the trophic state of the lake. In 1980, the median relative abundance of these oligotrophic species was 9% in the whole of Lake Neuchâtel compared with 70% in oligotrophic lakes, 35% in mesotrophic lakes, and 0% in eutrophic lakes. The scarcity of oligotrophic species in the deepest area (153 m) characterized better the meso-eutrophic state of Lake Neuchâtel than oxygen concentrations which never descended below 6 mg·1-1. Location of the area within the lake from where worms were sampled was of critical importance to assess the trophic state: some areas reflected the past rather than the present state of the lake.  相似文献   

15.
We studied the frequency and composition of potential microcystin (MC) producers in 70 Finnish lakes with general and genus-specific microcystin synthetase gene E (mcyE) PCR. Potential MC-producing Microcystis, Planktothrixand Anabaena spp. existed in 70%, 63%, and 37% of the lake samples, respectively. Approximately two-thirds of the lake samples contained one or two potential MC producers, while all three genera existed in 24% of the samples. In oligotrophic lakes, the occurrence of only one MC producer was most common. The combination of Microcystis and Planktothrix was slightly more prevalent than others in mesotrophic lakes, and the cooccurrence of all three MC producers was most widespread in both eutrophic and hypertrophic lakes. The proportion of the three-producer lakes increased with the trophic status of the lakes. In correlation analysis, the presence of multiple MC-producing genera was associated with higher cyanobacterial and phytoplankton biomass, pH, chlorophyll a, total nitrogen, and MC concentrations. Total nitrogen, pH, and the surface area of the lake predicted the occurrence probability of mcyE genes, whereas total phosphorus alone accounted for MC concentrations in the samples by logistic and linear regression analyses. In conclusion, the results suggested that eutrophication increased the cooccurrence of potentially MC-producing cyanobacterial genera, raising the risk of toxic-bloom formation.  相似文献   

16.
Claude Lang 《Hydrobiologia》1985,126(3):237-243
Primary production rates and total phosphorus concentrations indicated that Lake Geneva (Switzerland) was meso-eutrophic from 1970 to 1983. Worm communities of the profundal (50–309 m deep) were very similar in 1978 and 1983. Species numerically dominant in eutrophic lakes — such as Potamothrix hammoniensis, P. heuscheri and Tubifex tubifex — constituted the bulk (75%) of the communities. Species numerically dominant in mesotrophic lakes (mostly Potamothrix vejdovskyi) or in oligotrophic lakes (mostly Stylodrilus heringianus) constituted respectively 18% and 7% of the worm communities. The dominance of eutrophic species increased with depth in the whole lake; it increased also in the eastern region of the lake which is directly exposed to the heavy organic inputs of the Rhône River. Oligotrophic and mesotrophic species decreased along the same gradients. Species dominant in oligotrophic lakes were absent in 1978 and 1983 from the deepest area of Lake Geneva (300–309 m) whereas they constituted therein 25% of worm communities in 1967. Data based on worm species groups — i.e. species with similar resistance to eutrophication pooled together — were more easy to analyse statistically than those based on the isolated species. Thus, the relative abundance of three species groups, expressed in several ways, can indicate precisely the trophic state of a lake.  相似文献   

17.
Claude Lang 《Hydrobiologia》1984,115(1):131-138
In 1978–80, oligochaete communities of meso-eutrophic Lake Léman (Lake of Geneva) were compared to those of mesotrophic Lake Neuchâtel. Worm species were classified into three groups corresponding to their increasing tolerance to eutrophication: (1) oligotrophic species, mostly Peloscolex velutinus, Stylodrilus heringianus; (2) mesotrophic species, mostly Potamothrix vejdovskyi, P. bedoti; (3) eutrophic species, mostly Potamothrix hammoniensis, P. heuscheri, Tubifex tubifex. In both lakes, eutrophic species constituted the bulk of the communities in terms of absolute abundance. However, relative abundance of mesotrophic and eutrophic species was higher in Lake Léman; oligotrophic species were more important in Lake Neuchâtel. These data confirmed the trophic classification of lakes based on chemical parameters. The number of zero values, which perturbated statistical analysis, was reduced by using species groupings instead of isolated species. Thus, making the lakes more comparable even if different species were present in each one. Relative density values based on all samples were distributed among 4 density classes for the 3 species groupings. The 12 resulting frequencies described the community structure expressed in terms of eutrophication. Furthermore, these frequencies may be used for comparison of eutrophication levels in several lakes.  相似文献   

18.
19.
Chironomid communities as water quality indicators   总被引:32,自引:0,他引:32  
Recent mathematical indices summarizing biological communities of indicators are recapitulated. Improvements of these indices based on weighting according to width of trophic ranges of each species are suggested. Their principle deficiencies, however, are pointed out.
Revised lists of characteristic profundal as well as littoral and sublittoral chironomids in Nearctic and Palearctic lakes show that at least 15 characteristic chironomid species communities can be delineated, 6 in each of the oligotrophic and the eutrophic ranges and 3 in the mesotrophic range. It is proposed that these communities be lettered consecutively in the Greek alphabet from α (alpha) to o (omikron). A key to the 15 divisions based on the species associations in the profundal zone of harmonic lakes is put forward. There is very good correlation between the 15 divisions and the ratios of average total phosphorus to mean lake depth and average chlorophyll a to mean lake depth.
The ratio of chironomids to oligochaetes and the distribution patterns of single species have proven useful in pin-pointing localized areas of pollution. The primary mechanism governing the distribution of chironomid communities in oligotrophic and mesotrophic lakes appears to be the availability of food materials rather than the annual hypolimnetic oxygen concentration. In eutrophic lakes the relationships between organic matter accumulation and oxygen levels are so interdependent as to be inseparable.  相似文献   

20.
The seasonal development of autotrophic picoplankton was investigated in seven Danish lakes representing a eutrophication gradient. Highest cell abundance between 1.5 to 6 × 105 cells ml−1 were found in mid-summer. Minor peaks were observed in spring. In winter, densities were below 103 ml−1. The highest relative picoplankton contribution to total autotrophic biomass also occurred in mid-summer. In the eutrophic lakes and one humic lake the average seasonal contribution of picoplankton to total chlorophyll was below 1% increasing to 5-8% in the meso- and oligotrophic clear water lakes. During short periods the proportion of picoplankton did reach 25%. The higher relative importance of picoplankton in less productive lakes was not due to higher actual chlorophyll concentrations, but due to a much more pronounced response by larger algae at higher nutrient loading. Both cyanobacteria and eukaryote organisms were present as picoplankton. Only eukaryotes were found in one eutrophic lake and an acidic, humic lake. In the eutrophic lakes eukaryote picoplankton was dominant; both with respect to cell densities and biovolume, whereas cyanobacteria dominated the two meso-oligotrophic lakes. Autotrophic picoplankton were present in all lake types, however their importance seemed to be less in most eutrophic lakes than in less productive, meso-oligotrophic lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号