首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway is an important mediator of growth factor-dependent survival of mammalian cells. A variety of targets of the Akt protein kinase have been implicated in cell survival, including the protein kinase glycogen synthase kinase 3beta (GSK-3beta). One of the targets of GSK-3beta is translation initiation factor 2B (eIF2B), linking global regulation of protein synthesis to PI 3-kinase/Akt signaling. Because of the central role of protein synthesis, we have investigated the involvement of eIF2B, which is inhibited as a result of GSK-3beta phosphorylation, in programmed cell death. We demonstrate that expression of eIF2B mutants lacking the GSK-3beta phosphorylation or priming sites is sufficient to protect both Rat-1 and PC12 cells from apoptosis induced by overexpression of GSK-3beta, inhibition of PI 3-kinase, or growth factor deprivation. Consistent with these effects on cell survival, expression of nonphosphorylatable eIF2B prevented inhibition of protein synthesis following treatment of cells with the PI 3-kinase inhibitor LY294002. Conversely, cycloheximide induced apoptosis of PC12 and Rat-1 cells, further indicating that protein synthesis was required for cell survival. Inhibition of translation resulting from treatment with cycloheximide led to the release of cytochrome c from mitochondria, similar to the effects of inhibition of PI 3-kinase. Expression of nonphosphorylatable eIF2B prevented cytochrome c release resulting from PI 3-kinase inhibition but did not affect cytochrome c release or apoptosis induced by cycloheximide. Regulation of translation resulting from phosphorylation of eIF2B by GSK-3beta thus appears to contribute to the control of cell survival by the PI 3-kinase/Akt signaling pathway, acting upstream of mitochondrial cytochrome c release.  相似文献   

2.
The Bcr-Abl tyrosine kinase constitutively activates cytokine signal transduction pathways that stimulate growth and prevent apoptosis in hematopoietic cells. The antiapoptotic action of interleukin-3 (IL-3) has been linked to a signaling pathway which inactivates the proapoptotic protein Bad by phosphorylation through kinases such as Akt and Raf. Here we report also that expression of Bcr-Abl leads to phosphorylation of Bad in hematopoietic cells. Bad phosphorylation induced by Bcr-Abl is kinase dependent, requires phosphatidylinositol 3-kinase (PI3-kinase), and mitochondrial targeting of Raf, and occurs independently of Erk. The ability of Bcr-Abl to confer cytokine-independent survival to hematopoietic cells was compromised by inhibitors of PI3-kinase, as well as by a dominant negative form of Raf targeted to the mitochondria. Furthermore, when the capacity of Bcr-Abl to phosphorylate Bad was completely blocked by dominant negative Raf, a subpopulation of cells remained viable, providing evidence for Bad-independent survival pathways. This alternative survival pathway remained PI3-kinase dependent. Finally, Bcr-Abl, but not IL-3, inhibited the proapoptotic activity of overexpressed Bad. We conclude that the antiapoptotic function of Bcr-Abl is mediated through pathways involving PI3-kinase and Raf and that survival can occur in the absence of Bad phosphorylation.  相似文献   

3.
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.  相似文献   

4.
Bovine carotid artery endothelial (BAE) cells are resistant to tumor necrosis factor-alpha (TNF), like most other cells. We examined if mitogen-activated protein (MAP) kinase and phosphatidylinositol-3 (PI3) kinase/Akt pathways are involved in this effect. In BAE cells, TNF activates MAP kinase in a MAP kinase kinase 1 (MEK1) manner and Akt in PI3-kinase-dependent manner. Pretreatment with either the MEK1 inhibitor U0126 or PI3-kinase inhibitor LY294002 sensitized BAE cells to TNF-induced apoptosis. Neither U0126 nor LY294002 pretreatment affected TNF-induced activation of NF-kappaB, suggesting that the MAP kinase or PI3-kinase/Akt-mediated anti-apoptotic effect induced by TNF was not relevant to NF-kappaB activation. Both MAP kinase and PI3-kinase/Akt -mediated signaling could prevent cytochrome c release and mitochondrial transmembrane potential (Deltapsi) decrease. PI3-kinase/Akt signaling attenuated caspase-8 activity, whereas MAP kinase signaling impaired caspase-9 activity. These results suggest that TNF-induced MAP kinase and PI3-kinase/Akt signaling play important roles in protecting BAE cells from TNF cytotoxicity.  相似文献   

5.
Neutrophils are abundant, short-lived leukocytes with a key role in the defense against rapidly dividing bacteria. They enter apoptosis spontaneously within 24-48 h of leaving the bone marrow. However, their life span can be extended during inflammatory responses by several proinflammatory cytokines. Inappropriate survival of neutrophils contributes to chronic inflammation and tissue damage associated with diseases such as rheumatoid arthritis. We have previously reported that type I IFNs can inhibit both cytokine deprivation and Fas-induced apoptosis in activated T cells. IFN-beta locally produced by hyperplastic fibroblasts within the pannus tissue of patients with rheumatoid arthritis contributes to the inappropriately extended life span of infiltrating T cells. Type I IFNs are equally effective at delaying spontaneous apoptosis in human neutrophils. In the work presented here we investigated the signaling pathways involved in mediating this effect. The antiapoptotic actions of IFN-beta were targeted at an early stage of neutrophil apoptosis, occurring upstream of mitochondrial permeability transition, and were phosphatidylinositol 3-kinase (PI3K) dependent, as they were blocked by the PI3K inhibitor LY294002. Analysis of signaling pathways downstream of PI3K revealed that the antiapoptotic effect of type 1 IFN was inhibited by rottlerin, SN50, and cycloheximide, indicating requirements for activation of protein kinase C-delta, NF-kappaB, and de novo protein synthesis, respectively. Moreover, EMSA was used to show that the activation of NF-kappaB occurred downstream of PI3K and protein kinase C-delta activation. We conclude that type I IFNs inhibit neutrophil apoptosis in a PI3K-dependent manner, which requires activation of protein kinase C-delta and induction of NF-kappaB-regulated genes.  相似文献   

6.
Certain classes of tumor cells respond favorably to TRAIL due to the presence of cell surface death receptors DR4 and DR5. Despite this preferential sensitivity, resistance to TRAIL remains a clinical problem and therefore the heightened interest in identifying compounds to revert tumor sensitivity to TRAIL. We recently demonstrated that the phosphatidylinositide-3-kinase (PI3K) inhibitor, LY294002, and its inactive analog LY303511, sensitized tumor cells to vincristine-induced apoptosis, independent of PI3K/Akt pathway. Intrigued by these findings, we investigated the effect of LY303511 on TRAIL-induced apoptosis in HeLa cells. Preincubation of cells with LY30 significantly amplified TRAIL signaling as evidenced by enhanced DNA fragmentation, caspases 2, 3, 8, and 9 activation, and reduction in the tumor colony formation. This increase in TRAIL sensitivity involved mitochondrial membrane permeabilization resulting in the egress of cytochrome c and second mitochondrial activator of caspase/direct IAP-binding protein with low PI, cleavage of X-linked inhibitor of apoptosis protein, and activation of caspase 9. We link this execution signal to the ability of LY30 to downregulate cFLIP(S) and oligomerize DR5, thus facilitating the signaling of the death initiating signaling complex. The subsequent exposure to TRAIL resulted in processing/activation of caspase 8 and cleavage of its substrate, the BH3 protein Bid. These data provide a novel mechanism of action of this small molecule with the potential for use in TRAIL-resistant tumors.  相似文献   

7.
Bcl-x(S), a pro-apoptotic member of the Bcl-2 protein family, is localized in the mitochondrial outer membrane and induces caspase-dependent and nerve growth factor (NGF)-inhibitable apoptosis in PC12 cells. The mechanism of action of Bcl-x(S) and how NGF inhibits this death are not fully understood. It is still unknown whether Bcl-x(S) induces mitochondrial cytochrome c release, and which apoptotic step NGF inhibits. We show that Bcl-x(S) induces cytochrome c release and caspase-3 activation in several cell types, and that in PC12 cells, these events are inhibited by NGF treatment. The survival effect of NGF was inhibited by inhibitors of protein kinase C (PKC), phosphatidylinositol-3-kinase (PI 3-kinase), and the mitogen-activated protein kinase kinase (MEK) inhibitors GF109203X, LY294002, and U0126. These findings show that cytochrome c release and caspase-3 activation participate in Bcl-x(S)-induced apoptosis, and that NGF inhibits Bcl-x(S)-induced apoptosis at the mitochondrial level via the PKC, PI 3-kinase, and MEK signaling pathways.  相似文献   

8.
Glucocorticoids are commonly used in the treatment of various lymphoid malignancies. In the present study, we show that dexamethasone (Dex) induced depolarization of mitochondrial membrane, release of cytochrome c and DNA fragmentation in a human follicular lymphoma cell line, HF28RA. New protein synthesis was required before Dex-induced mitochondrial changes, and the kinetics of the apoptotic events correlated with the upregulation of the Bim protein. Furthermore, we studied whether specific inhibitors of known survival pathways would potentiate Dex-induced apoptosis. Our results show that inhibition of PKC and ERK pathways had no effect on apoptosis. In contrast, inhibition of PI3-kinase or Akt markedly enhanced Dex-induced apoptosis. The enhancement was seen at the mitochondrial level, and the kinetics of apoptosis was notably accelerated. In addition, inhibition of PI3-kinase did not alter levels of Bax, Bcl-2, Bcl-X(L) or Bim proteins in mitochondria but caused translocation of the pro-apoptotic protein Bad to mitochondria. However, inhibition of PI3-kinase-Akt pathway and subsequent translocation of Bad to mitochondria did not induce apoptosis itself. Based on these results and our current understanding of Bim and Bad action, it seems that both proteins play a synergistic role in this process. Thus, these results indicate that inhibitors of PI3-kinase-Akt pathway might be combined in future with glucocorticoids to improve the treatment of lymphoid malignancies.  相似文献   

9.
The epithelial lining of the intestine serves as a barrier to lumenal bacteria and can be compromised by pathologic Fas-mediated epithelial apoptosis. Phosphatidylinositol (PI)3-kinase signaling has been described to limit apoptosis in other systems. We hypothesized that PI3-kinase-dependent pathways regulate Fas-mediated apoptosis and barrier function in intestiynal epithelial cells (IEC). IEC lines (HT-29 and T84) were exposed to agonist anti-Fas antibody in the presence or absence of chemical inhibitors of PI3-kinase (LY294002 and wortmannin). Apoptosis, barrier function, changes in short circuit current (DeltaI(sc)), and expression of adhesion molecules were assessed. Inhibition of PI3-kinase strongly sensitized IEC to Fas-mediated apoptosis. Expression of constitutively active Akt, a principal downstream effector of the PI3-kinase pathway, protected against Fas-mediated apoptosis to an extent that was comparable with expression of a genetic caspase inhibitor, p35. PI3-kinase inhibition sensitized to apoptosis by increasing and accelerating Fas-mediated caspase activation. Inhibition of PI3-kinase combined with cross-linking Fas was associated with increased permeability to molecules that were <400 Da but not those that were >3,000 Da. Inhibition of PI3-kinase resulted in chloride secretion that was augmented by cross-linking Fas. Confocal analyses revealed polymerization of actin and maintenance of epithelial cell adhesion molecule-mediated interactions in monolayers exposed to anti-Fas antibody in the context of PI3-kinase inhibition. PI3-kinase-dependent pathways, especially Akt, protect IEC against Fas-mediated apoptosis. Inhibition of PI3-kinase in the context of Fas signaling results in increased chloride secretion and barrier dysfunction. These findings suggest that agonists of PI3-kinase such as growth factors may have a dual effect on intestinal inflammation by protecting epithelial cells against immune-mediated apoptosis and limiting chloride secretory diarrhea.  相似文献   

10.
Phosphatidylinositol 3'-kinase (PI 3-kinase) catalyzes the formation of 3' phosphoinositides and has been implicated in an intracellular signaling pathway that inhibits apoptosis in both neuronal and hemopoietic cells. Here, we investigated two potential downstream mediators of PI 3-kinase, the serine/threonine p70 S6-kinase (S6-kinase) and the antiapoptotic protein B cell lymphoma-2 (Bcl-2). Stimulation of factor-dependent cell progenitor (FDCP) cells with either IL-4 or insulin-like growth factor (IGF)-I induced a 10-fold increase in the activity of both PI 3-kinase and S6-kinase. Rapamycin blocked 90% of the S6-kinase activity but did not affect PI 3-kinase, whereas wortmannin and LY294002 inhibited the activity of both S6-kinase and PI 3-kinase. However, wortmannin and LY294002, but not rapamycin, blocked the ability of IL-4 and IGF-I to promote cell survival. We next established that IL-3, IL-4, and IGF-I increase expression of Bcl-2 by >3-fold. Pretreatment with inhibitors of PI 3-kinase, but not rapamycin, abrogated expression of Bcl-2 caused by IL-4 and IGF-I, but not by IL-3. None of the cytokines affected expression of the proapoptotic protein Bax, suggesting that all three cytokines were specific for Bcl-2. These data establish that inhibition of PI 3-kinase, but not S6-kinase, blocks the ability of IL-4 and IGF-I to increase expression of Bcl-2 and protect promyeloid cells from apoptosis. The requirement for PI 3-kinase to maintain Bcl-2 expression depends upon the ligand that activates the cell survival pathway.  相似文献   

11.
Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.  相似文献   

12.
We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with alterations in integrin signaling. We now investigated whether differentiation and apoptosis of Caco-2 cells induced by the short-chain fatty acid butyrate (NaBT) was associated with alterations in the integrin-mediated signaling pathway with special interest in the expression and activity of focal adhesion kinase (FAK), of the downstream phosphatidylinositol 3'-kinase (PI 3-kinase)-Akt pathway and in the role of the nuclear factor kappaB (NF-kappaB). NaBT increased the level of sucrase. It induced apoptosis as shown by: (1) decreased Bcl-2 and Bcl-X(L) proteins and increased Bax protein; (2) activation of caspase-3; and (3) increased shedding of apoptotic cells in the medium. This effect was associated with defective integrin-mediated signaling as shown by: (1) down-regulation of beta1 integrin expression; 2) decreased FAK expression and tyrosine phosphorylation; (3) concerted alterations in cytoskeletal and structural focal adhesions proteins (talin, ezrin); and (4) decreased FAK ability to associate with PI 3-kinase. However, in Caco-2 cells, beta1-mediated signaling failed to be activated downstream of FAK and PI 3-kinase at the level of Akt. Transfection studies show that NaBT treatment of Caco-2 cells promoted a significant activation of the NF-kappaB which was probably involved in the NaBT-induced apoptosis. Our results indicate that the prodifferentiating agent NaBT induced apoptosis of Caco-2 cells probably through NF-kappaB activation together with a defective beta1 integrin-FAK-PI 3-kinase pathways signaling.  相似文献   

13.
We have previously shown that transactivation-proficient hepatitis virus B X protein (HBx) protects Hep 3B cells from transforming growth factor-beta (TGF-beta)-induced apoptosis via activation of the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway. This work further investigated how HBx activates PI 3-kinase. Src activity was elevated in Hep 3B cells following expression of transactivation-proficient HBx or HBx-GFP fusion proteins. The Src family kinase inhibitor PP2 and C-terminal Src kinase (Csk) both alleviated HBx-mediated PI 3-kinase activation and protection from TGF-beta-induced apoptosis. Therefore, HBx activated a survival signal by linking Src to PI 3-kinase. Systemic subcellular fractionation and membrane flotation assays indicated that approximately 1.5% of ectopically expressed HBxGFP was associated with periplasmic membrane where Src was located. However, neither nucleus-targeted nor periplasmic membrane-targeted HBxGFP was able to upregulate Src activity or to augment PI 3-kinase survival signaling pathway.  相似文献   

14.
We have shown earlier that platelet-activating factor (PAF) causes apoptosis in enterocytes via a mechanism that involves Bax translocation to mitochondria, followed by caspase activation and DNA fragmentation. Herein we report that, in rat small intestinal epithelial cells (IEC-6), these downstream apoptotic effects are mediated by a PAF-induced inhibition of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt) signaling pathway. Treatment with PAF results in rapid dephosphorylation of Akt, phosphoinositide-dependent kinase-1, and the YXXM p85 binding motif of several proteins and redistribution of Akt-pleckstrin homology domain-green fluorescent protein, i.e., an in vivo phosphatidylinositol (3,4,5)-trisphosphate sensor, from membrane to cytosol. The proapoptotic effects of PAF were inhibited by both n-3 and n-6 polyunsaturated fatty acids but not by a saturated fatty acid palmitate. Indomethacin, an inhibitor of prostaglandin biosynthesis, did not influence the baseline or PAF-induced apoptosis, but 2-bromopalmitate, an inhibitor of protein palmitoylation, inhibited all of the proapoptotic effects of PAF. Our data strongly suggest that an inhibition of the PI 3-kinase/Akt signaling pathway is the main mechanism of PAF-induced apoptosis in enterocytes and that polyunsaturated fatty acids block this mechanism very early in the signaling cascade independently of any effect on prostaglandin synthesis, and probably directly via an effect on protein palmitoylation.  相似文献   

15.
Whereas most mammalian cells require extracellular signals to suppress apoptosis, preimplantation embryos can survive and develop to the blastocyst stage in defined medium without added serum or growth factors. Since cells of these embryos are capable of undergoing apoptosis, it has been suggested that their lack of dependence upon exogenous growth factors results from the production of endogenous growth factors that suppress apoptosis by an autocrine signaling mechanism. In the present study, we have examined the growth factor requirements and intracellular signaling pathways that suppress apoptosis in both mouse preimplantation embryos and embryonic stem (ES) cells, which are derived from the blastocyst inner cell mass. Cultured ES cells, in contrast to intact embryos, required serum growth factors to prevent apoptosis. Suppression of ES cell apoptosis by serum growth factors required the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway, since apoptosis was rapidly induced by inhibition of PI 3-kinase with LY294002. In contrast, inhibition of MEK/ERK signaling with U0126 or of mTOR with rapamycin had no detectable effect on ES cell survival. Thus, like most mammalian cells, the survival of ES cells is mediated by growth factor stimulation of PI 3-kinase signaling. Treatment with LY294002 (but not with U0126 or rapamycin) similarly induced apoptosis of mouse blastocysts in serum-free medium, indicating that intact preimplantation embryos are also dependent upon PI 3-kinase signaling for survival. These results demonstrate that PI 3-kinase signaling is required to suppress apoptosis of both ES cells and intact preimplantation embryos, consistent with the hypothesis that survival of preimplantation embryos is maintained by endogenous growth factors that stimulate the PI 3-kinase pathway.  相似文献   

16.
Sendai virus (SeV) infection causes apoptosis, which is manifested only late after infection; however, inhibition of phosphatidylinositol 3-kinase (PI3K) dramatically accelerates the process. We report here that rapid apoptosis uses the same mitochondrial apoptotic pathway as slow apoptosis. Cytoplasmic cytochrome c (cyt c) was released early in both cases, but the antiapoptotic protein XIAP prevented early activation of the caspases in cells with active PI3K. When the enzyme was inhibited, XIAP was degraded rapidly in infected cells, allowing cyt c to cause caspase activation and early apoptosis. Thus, SeV infection-mediated apoptosis is temporally regulated by the prevention of XIAP degradation by PI3K.  相似文献   

17.
Neutrophils die rapidly via apoptosis and their survival is contingent upon rescue from constitutive programmed cell death by signals from the microenvironment. In these experiments, we investigated whether prevention of K+ efflux could affect the apoptotic machinery in human neutrophils. Disruption of the natural K+ electrochemical gradient suppressed neutrophil apoptosis (assessed by annexin V binding, nuclear DNA content and nucleosomal DNA fragmentation) and prolonged cell survival within 24–48 h of culture. High extracellular K+ (10–100 mM) did not activate extracellular signal-regulated kinase (ERK) and Akt, nor affected phosphorylation of p38 MAPK associated with constitutive apoptosis. Consistently, pharmacological blockade of ERK kinase or phosphatidylinositol 3-kinase (PI 3-kinase) did not affect the anti-apoptotic action of KCl. Inhibition of K+ efflux effectively reduced, though never completely inhibited, decreases in mitochondrial transmembrane potential (ΔΨm) that preceded development of apoptotic morphology. Changes in ΔΨm resulted in attenuation of cytochrome c release from mitochondria into the cytosol and decreases in caspase-3 activity. Culture of neutrophils in medium containing 80 mM KCl with the pan-caspase inhibitor Z-VAD-FMK resulted in slightly greater suppression of apoptosis than KCl alone. High extracellular KCl also attenuated translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) from mitochondria to nuclei. The DNase inhibitor, aurintricarboxylic acid (ATA) partially inhibited nucleosomal DNA fragmentation, and the effects of ATA and 80 mM KCl were not additive. These results show that prevention of K+ efflux promotes neutrophil survival by suppressing apoptosis through preventing mitochondrial dysfunction and release of the pro-apoptotic proteins cytochrome c, AIF and EndoG independent of ERK, PI 3-kinase and p38 MAPK. Thus, K+ released locally from damaged cells may function as a survival signal for neutrophils.  相似文献   

18.
Chlamydiae replicate intracellularly in a vacuole called an inclusion. Chlamydial-infected host cells are protected from mitochondrion-dependent apoptosis, partly due to degradation of BH3-only proteins. The host-cell adapter protein 14-3-3beta can interact with host-cell apoptotic signaling pathways in a phosphorylation-dependent manner. In Chlamydia trachomatis-infected cells, 14-3-3beta co-localizes to the inclusion via direct interaction with a C. trachomatis-encoded inclusion membrane protein. We therefore explored the possibility that the phosphatidylinositol-3 kinase (PI3K) pathway may contribute to resistance of infected cells to apoptosis. We found that inhibition of PI3K renders C. trachomatis-infected cells sensitive to staurosporine-induced apoptosis, which is accompanied by mitochondrial cytochrome c release. 14-3-3beta does not associate with the Chlamydia pneumoniae inclusion, and inhibition of PI3K does not affect protection against apoptosis of C. pneumoniae-infected cells. In C. trachomatis-infected cells, the PI3K pathway activates AKT/protein kinase B, which leads to maintenance of the pro-apoptotic protein BAD in a phosphorylated state. Phosphorylated BAD is sequestered via 14-3-3beta to the inclusion, but it is released when PI3K is inhibited. Depletion of AKT through short-interfering RNA reverses the resistance to apoptosis of C. trachomatis-infected cells. BAD phosphorylation is not maintained and it is not recruited to the inclusion of Chlamydia muridarum, which protects poorly against apoptosis. Thus, sequestration of BAD away from mitochondria provides C. trachomatis with a mechanism to protect the host cell from apoptosis via the interaction of a C. trachomatis-encoded inclusion protein with a host-cell phosphoserine-binding protein.  相似文献   

19.
Poliovirus (PV)-induced apoptosis seems to play a major role in tissue injury in the central nervous system (CNS). We have previously shown that this process involves PV-induced Bax-dependent mitochondrial dysfunction mediated by early JNK activation in IMR5 neuroblastoma cells. We showed here that PV simultaneously activates the phosphatidylinositol 3-kinase (PI3K)/Akt survival signaling pathway in these cells, limiting the extent of JNK activation and thereby cell death. JNK inhibition is associated with PI3K-dependent negative regulation of the apoptosis signal-regulating kinase 1, which acts upstream from JNK in PV-infected IMR5 cells. In poliomyelitis, this survival pathway may limit the spread of PV-induced damage in the CNS.  相似文献   

20.
In this study we have investigated the down-regulation of epidermal growth factor (EGF) receptor signaling by protein-tyrosine phosphatases (PTPs) in COS1 cells. The 45-kDa variant of the PTP TCPTP (TC45) exits the nucleus upon EGF receptor activation and recognizes the EGF receptor as a cellular substrate. We report that TC45 inhibits the EGF-dependent activation of the c-Jun N-terminal kinase, but does not alter the activation of extracellular signal-regulated kinase 2. These data demonstrate that TC45 can regulate selectively mitogen-activated protein kinase signaling pathways emanating from the EGF receptor. In EGF receptor-mediated signaling, the protein kinase PKB/Akt and the mitogen-activated protein kinase c-Jun N-terminal kinase, but not extracellular signal-regulated kinase 2, function downstream of phosphatidylinositol 3-kinase (PI 3-kinase). We have found that TC45 and the TC45-D182A mutant, which is capable of forming stable complexes with TC45 substrates, inhibit almost completely the EGF-dependent activation of PI 3-kinase and PKB/Akt. TC45 and TC45-D182A act upstream of PI 3-kinase, most likely by inhibiting the recruitment of the p85 regulatory subunit of PI 3-kinase by the EGF receptor. Recent studies have indicated that the EGF receptor can be activated in the absence of EGF following integrin ligation. We find that the integrin-mediated activation of PKB/Akt in COS1 cells is abrogated by the specific EGF receptor protein-tyrosine kinase inhibitor tyrphostin AG1478, and that TC45 and TC45-D182A can inhibit activation of PKB/Akt following the attachment of COS1 cells to fibronectin. Thus, TC45 may serve as a negative regulator of growth factor or integrin-induced, EGF receptor-mediated PI 3-kinase signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号