首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four photosynthetic bacteria, isolated from 14 samples taken from seafood processing plants, were identified as species of Rhodocyclus gelatinosus, belonging to the purple, non-sulphur bacteria of the family Rhodospirillaceae. Cultivation in synthetic medium under four different conditions indicated that all four strains gave maximum carotenoid and bacteriochlorophyll synthesis under anaerobic conditions in the light, with values of 11 to 12.6 and 102 to 108 mg/g dry cell wt, respectively. These values are 87% higher than the pigment content obtained from aerobic cultivation, although the cell biomass of all strains (1.7 to 2.3 g/l) was 22 to 38% higher under aerobic conditions. Protein content was always between 32 and 43%. The specific growth rates of all isolates in aerobic cultivation (0.04 to 0.06 h-1) were twice those in anaerobic conditions in the light. No growth occurred in anaerobic conditions in the dark.  相似文献   

2.
刘秀艳  徐向阳  叶敏  项硕 《微生物学报》2008,48(9):1221-1226
[目的]利用本实验室筛选的5-氨基乙酰丙酸(5-aminolevulinic acid,ALA)高产紫色非硫红假单胞菌株,以味精、柠檬酸、啤酒和豆制品生产废水作为底物,进行光合细菌利用废水产生ALA并去除化学需氧量(CODcr)的研究.[方法]光合细菌培养温度为30℃,光照强度为3000 Lux,进行乙酰丙酸、甘氨酸、琥珀酸的添加与否和废水灭菌与否的处理,用比色法测定菌液光密度,ALA检测采用Ehrlich'S试剂分光光度检测法.[结果]在不添加乙酰丙酸(levulinic acid,LA)、甘氨酸和琥珀酸的条件下,菌株99-28的菌体生长在72~96 h达到稳定期,ALA产量在96h最高,在4种废水中,味精废水的ALA产量最高,CODcr去除率也最高;添加LA、甘氨酸和琥珀酸显著提高ALA产量,但CODcr去除效果不好.废水不灭菌略微降低99-28菌株的生长和CODcr的去除能力,在添加LA、甘氨酸和琥珀酸的条件下的,ALA产量明显下降.ALA高产突变菌株L-1在有机废水中的生长状况、对有机废水的CODcr去除与菌株99-28表现一致,在不添加和添加LA、甘氨酸和琥珀酸的条件下,突变株L-1的ALA产量明显比菌株99-28高.[结论]本实验室筛选的紫色非硫红假单胞菌株能利用有机废水作为底物产生ALA并降解CODcr.  相似文献   

3.
Wastewater treatment is an energy-intensive process and a net emitter of greenhouse gas emissions. A large fraction of these emissions is due to intensive aeration of aerobic bacteria to facilitate break-down of organic compounds. Algae can generate dissolved oxygen at levels in excess of saturation, and therefore hold the potential to partially displace or complement mechanical aeration in wastewater treatment processes. The objective of this study was to develop an internally consistent experimental and modeling approach to test the hypothesis that algal photosynthetic aeration can speed the removal of organic constituents by bacteria. This framework was developed using a simplified wastewater treatment process consisting of a model bacteria (Escherichia coli), a model algae (Auxenochlorella protothecoides), and a single carbon source that was consumable by bacteria only. This system was then tested both with and without the presence of algae. A MATLAB model that considered mass transfer and biological kinetics was used to estimate the production and consumption of O2 and CO2 by algae and bacteria. The results indicated that the presence of algae led to 18–66% faster removal of COD by bacteria, and that roughly one-third of biochemical oxygen demand was offset by algal photosynthetic aeration.  相似文献   

4.
Exciton calculations on tubular pigment aggregates similar to recently proposed models for BChl c/d/e antennae in light-harvesting chlorosomes from green photosynthetic bacteria yield electronic absorption spectra that are super-impositions of linear J-aggregate spectra. While the electronic spectroscopy of such antennae differs considerably from that of linear J-aggregates, tubular exciton models (which may be viewed as cross-coupled J-aggregates) may be constructed to yield spectra that resemble that of the BChl c antenna in the green bacterium Chloroflexus aurantiacus. Highly symmetric tubular models yield absorption spectra with dipole strength distributions essentially identical to that of a J-aggregate; strong symmetry-breaking is needed to simulate the absorption spectrum of the BChl c antenna.Abbreviations BChl bacteriochlorophyll - [E,M] BChl c S bacteriochlorophyll c with ethyl and methyl substituents in the 8- and 12-positions, and with stearol as the esterifying alcohol  相似文献   

5.
Cytochrome bc 1 complexes have been isolated from wild type Rhodopseudomonas viridis and Rhodospirillum rubrum and purified by affinity chromatography on cytochrome c-Sepharose 4B. Both complexes are largely free of bacteriochlorophyll and carotenoids and contain cytochromes b and c 1 in a 2:1 molar ratio. For the Rps. viridis complex, evidence has been obtained for two spectrally distinct b-cytochromes. The R. rubrum complex contains a Rieske iron-sulfur protein (present in approximately 1:1 molar ratio to cytochrome c 1) and catalyzes an antimycin A- and myxothiazol-sensitive electron transfer from duroquinol to equine cytochrome c or R. rubrum cytochrome c 2. Although an attempt to prepare a cytochrome bc 1 complex from the gliding green bacterium Chloroflexus aurantiacus was not successful, membranes isolated from phototrophically grown Cfl. aurantiacus were shown to contain a Rieske iron-sulfur protein and protoheme (the prosthetic group of b-type cytochromes).Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

6.
Spirulina cultivation in digested sago starch factory wastewater   总被引:1,自引:0,他引:1  
Wastewater arising from the production of sago starchhas a high carbon to nitrogen ratio, which is improvedwith anaerobic fermentation in an upflow packed beddigester. The digested effluent with an average C: N:P ratio of 24: 0.14: 1 supported growth of Spirulina platensis (Arthrospira) with anaverage specific growth rate () of 0.51day-1 compared with the average of 0.54day-1 in the inorganic Kosaric Medium in a highrate algal pond. Supplementation with 6 mM urea and2.1 mM K2HPO4 produced gross biomassproductivity of 14.4 g m-2 day-1. Aflow-rate of 24 cm s-1 increased the andgross biomass productivity (18 g m-2 day-1). The highest crude protein, carbohydrate and lipidcontents of the biomass were 68%, 23% and 11%,respectively. Percentage reductions in chemicaloxygen demand, ammoniacal-nitrogen and phosphatelevels of the digested effluent reached 98.0%, 99.9%and 99.4% respectively. The HRAP offers a goodtreatment system for sago starch factory wastewater.  相似文献   

7.
Complete nucleotide sequences are now available for the pet (fbc) operons coding for the three electron carrying protein subunits of the cytochrome bc 1 complexes of four photosynthetic purple non-sulfur bacteria. It has been demonstrated that, although the complex from one of these bacteria may contain a fourth subunit, three subunit complexes appear to be fully functional. The ligands to the three hemes and the one [2Fe-2S] cluster in the complex have been identified and considerable progress has been made in mapping the two quinone-binding sites present in the complex, as well as the binding sites for quinone analog inhibitors. Hydropathy analyses and alkaline phosphatase fusion experiments have provided considerable insight into the likely folding pattern of the cytochrome b peptide of the complex and identification of the electrogenic steps associated with electron transport through the complex has allowed the orientation within the membrane of the electron-carrying groups of the complex to be modeled.  相似文献   

8.
Two novel denitrifying bacteria were successfully isolated from industrial wastewater and soil samples. Using morphological, biochemical/biophysical and 16S rRNA gene analyses, these two bacteria were identified as Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13, respectively. Both of these two bacteria showed efficient NO3 -N removing abilities under a semi-anaerobic condition without obvious accumulation of NO2 -N, N2O-N and NH4 +-N. NO3 -N removal from paper mill wastewater was also successful by treatments with either a denitrifier or an immobilization method. Therefore, this study provides valuable denitrifying bacteria in biotreatment of industrial wastewater and other environmental pollution caused by NO3 /NO2 .  相似文献   

9.
The performance of a sulfide-removal system based on biofilms dominated by green sulfur bacteria (GSB) has been investigated. The system was supplied with radiant energy in the band 720-780 nm, and fed with a synthetic wastewater. The areal net sulfide removal rate and the efficacy of the incident radiant energy for sulfide removal have been characterized over ranges of bulk sulfide concentration (1.6-11.5 mg L(-1)) and incident irradiance (0.21-1.51 W m(-2)). The areal net sulfide removal rate increased monotonically with both increasing incident irradiance and increasing bulk sulfide concentration. The efficacy of the radiant energy for sulfide removal (the amount of sulfide removed per unit energy supplied) also increased monotonically with rising bulk sulfide concentration, but exhibited a maximum value with respect to incident irradiance. The maximum observed values of this net removal rate and this efficacy were, respectively, 2.08 g m(-2) d(-1) and 2.04 g W(-1) d(-1). In-band changes in the spectral composition of the radiant energy affected this efficacy only slightly. The products of sulfide removal were sulfate and elemental-S. The elemental-S was scarcely released into the liquid, however, and reasons for this, such as sulfur reduction and polysulfide formation, are considered. Between 1.45 and 3.85 photons were needed for the net removal of one electron from S-species. Intact samples of the biofilm were characterized by microscopy, and their thicknesses lay between 39 +/- 9 and 429 +/- 57 microm. The use of the experimentally determined rates and efficacies for the design of a pilot-scale system is illustrated.  相似文献   

10.
The development of genetics as a tool for the study of photosynthesis is recounted, beginning in the period when no genetic exchange mechanism was known for any photosynthetic microorganism, and ending with the sequencing of the key genes for photosynthesis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Chlorella pyrenoidosa was cultivated in soybean processing wastewater (SPW) in batch and fed-batch cultures without a supply of additional nutrients. The alga was able to remove 77.8 ± 5.7%, 88.8 ± 1.0%, 89.1 ± 0.6% and 70.3 ± 11.4% of soluble chemical oxygen demand (SCODCr), total nitrogen (TN), NH4+-N and total phosphate (TP), respectively, after 120 h in fed-batch culture. C. pyrenoidosa attained an average biomass productivity of 0.64 g L−1 d−1, an average lipid content of 37.00 ± 9.34%, and a high lipid productivity of 0.40 g L−1 d−1. Therefore, cultivation of C. pyrenoidosa in SPW could yield cleaner water and useful biomass.  相似文献   

12.
Numerous prokaryotes, belonging to physiologically and taxonomically different groups, are able to produce hydrogen. Some photosynthetic bacteria have the property of light-dependent production of hydrogen from organic substrates. We isolated several photosynthetic purple and green bacteria from enrichment cultures made from the water of a waste-water pond of a cool-drink refilling station. After testing them for their ability to use various organic compounds as carbon source, and sulphide, thiosulphate and organic compounds as electron donor, we selected the fastest-growing isolate, aRhodopseudomonas, for a study of its ability to produce molecular hydrogen in presence of light. Immobilized cells of this isolate produced significant amounts of hydrogen from both sewage and waste water  相似文献   

13.
The feasibility of using photosynthetic sulfide-oxidizing bacteria to remove sulfide from wastewater in circumstances where axenic cultures are unrealistic has been completely reconsidered on the basis of known ecophysiological data, and the principles of photobioreactor and chemical reactor engineering. This has given rise to the development of two similar treatment concepts relying on biofilms dominated by green sulfur bacteria (GSB) that develop on the exterior of transparent surfaces suspended in the wastewater. The GSB are sustained and selected for by radiant energy in the band 720-780 nm, supplied from within the transparent surface. A model of one of these concepts was constructed and with it the reactor concept was proven. The dependence of sulfide-removal rate on bulk sulfide concentration has been ascertained. The maximum net areal sulfide removal rate was 2.23 g m-(2) day-(1) at a bulk sulfide concentration of 16.5 mg L(-1) and an incident irradiance of 1.51 W m(-2). The system has a demonstrated capacity to mitigate surges in sulfide load, and appears to use much less radiant power than comparable systems. The efficacy with which this energy was used for sulfide removal was 1.47 g day(-1) W(-1). The biofilm was dominated by GSB, and evidence gathered indicated that other types of phototrophs were not present.  相似文献   

14.
The core complex of purple bacteria is a supramolecular assembly consisting of an array of light-harvesting LH1 antenna organized around the reaction center. It has been isolated and characterized in this work using a Rubrivivax gelatinosus mutant lacking the peripheral LH2 antenna. The purification did not modify the organization of the complex as shown by comparison with the intact membranes of the mutant. The protein components consisted exclusively of the reaction center, the associated tetraheme cyt c and the LH1 αβ subunits; no other protein which could play the role of pufX could be detected. The complex migrated as a single band in a sucrose gradient, and as a monomer in a native Blue gel electrophoresis. Comparison of its absorbance spectrum with those of the isolated RC and of the LH1 antenna as well as measurements of the bacteriochlorophyll/tetraheme cyt c ratio indicated that the mean number of LH1 subunits per RC-cyt c is near 16. The polypeptides of the LH1 antenna were shown to present several modifications. The α one was formylated at its N-terminal residue and the N-terminal methionine of β was cleaved, as already observed for other Rubrivivax gelatinosus strains. Both modifications occurred possibly by post-translational processing. Furthermore the α polypeptides were heterogeneous, some of them having lost the 15 last residues of their C-terminus. This truncation of the hydrophobic C-terminal extension is similar to that observed previously for the α polypeptide of the Rubrivivax gelatinosus LH2 antenna and is probably due to proteolysis or to instability of this extension.  相似文献   

15.
16.
The laser diode (LD) is a unique light source that can efficiently produce all radiant energy within the narrow wavelength range used most effectively by a photosynthetic microorganism. We have investigated the use of a single type of LD for the cultivation of the well-studied anoxygenic photosynthetic bacterium, Rhodobacter capsulatus (Rb. capsulatus). An array of vertical-cavity surface-emitting lasers (VCSELs) was driven with a current of 25 mA, and delivered radiation at 860 nm with 0.4 nm linewidth. The emitted light was found to be a suitable source of radiant energy for the cultivation of Rb. capsulatus. The dependence of growth rate on incident irradiance was quantified. Despite the unusual nearly monochromatic light source used in these experiments, no significant changes in the pigment composition and in the distribution of bacteriochlorophyll between LHII and LHI-RC were detected in bacterial cells transferred from incandescent light to laser light. We were also able to show that to achieve a given growth rate in a light-limited culture, the VCSEL required only 30% of the electricity needed by an incandescent bulb, which is of great significance for the potential use of laser-devices in biotechnological applications and photobioreactor construction.  相似文献   

17.
In 1949, Howard Gest and Martin Kamen published two brief papers in Science that changed our perceptions about the metabolic capabilities of photosynthetic bacteria. Their discovery of photoproduction of hydrogen and the ability of Rhodospirillum rubrum to fix nitrogen led to a greater understanding of both processes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
A new protease (araujiain h l) was purified to mass spectroscopy homogeneity from the latex of Araujia hortorum Fourn. (Asclepiadaceae) fruits by ultracentrifugation and ion exchange chromatography. The enzyme has a molecular mass of 24,031 (mass spectrometry) and an isoelectric point higher than 9.3. The optimum pH range for casein hydrolysis was 8.0–9.5. The enzyme showed remarkable caseinolytic activity at high temperatures, although its thermal stability decayed rapidly. The proteinase was activated by thiol compounds and inhibited by common thiol-blocking reagents, particularly E-64 and HgCl2, suggesting the enzyme belongs to the cysteine protease family. The concentration of active sites as determined by titration with E-64 was 3.3 M. When assayed on N--CBZ-amino acid-p-nitrophenyl esters, the enzyme showed higher preference for the glutamine derivative, followed by those of alanine, asparagine, glycine, and leucine, in decreasing order. Partial homology (36–48%) with other plant cysteine proteinases was observed in an internal fragment obtained by Protease V8 treatment.  相似文献   

19.
A membrane-bound cytochrome of the b-type (cytochrome b-560) was success-fully purified from chromatophores of the photosynthetic purple sulfur bacterium Chromatium vinosum by treatment with sodium cholate, sodium deoxycholate, sodium thiocyanate, and bacterial alkaline protease (EC 3·4·21·14) followed by gel filtration.The purified cytochrome b-560 showed the absorption maxima at 279, 412.5 and 533 nm in the oxidized form, and 427, 530 and 560 nm in the reduced form. Reduced-minus-oxidized difference millimolar absorption coefficient was 14.0 for a wavelength pair, 560 minus 540 nm.Isolated cytochrome b-560 was electrophoretically homogeneous, and its minimal molecular weight was estimated to the 13,000 by SDS polyacrylamide gel electrophoresis.The midpoint potential at pH 8.0 was –110mV, and was not dependent on the ambient pH in the pH range of 6.8 to 8.8.  相似文献   

20.
The membrane-bound photooxidizable cytochrome c-554 from Chloroflexus aurantiacus has been purified. The purified protein runs as a single heme staining band on SDS-PAGE with an apparent molecular mass of 43 000 daltons. An extinction coefficient of 28 ± 1 mM–1 cm–1 per heme at 554 nm was found for the dithionite-reduced protein. The potentiometric titration of the hemes takes place over an extended range, showing clearly that the protein does not contain a single heme in a well-defined site. The titration can be fit to a Nernst curve with midpoint potentials at 0, +120, +220 and +300 mV vs the standard hydrogen electrode. Pyridine hemochrome analysis combined with a Lowry protein assay and the SDS-PAGE molecular weight indicates that there are a minimum of three, and probably four hemes per peptide. Amino acid analysis shows 5 histidine residues and 29% hydrophobic residues in the protein. This cytochrome appears to be functionally similar to the bound cytochrome from Rhodopseudomonas viridis. Both cytochrome c-554 from C. aurantiacus and the four-heme cytochrome c-558-553 from R. viridis appear to act as direct electron donors to the special bacteriochlorophyll pair of the photosynthetic reaction center. They have a similar content of hydrophobic amino acids, but differ in isoelectric point, thermodynamic characteristics, spectral properties, and in their ability to be photooxidized at low temperature.Abbreviations LDAO lauryl dimethyl amine-N-oxide - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - mV millivolt - Em.8 midpoint potential at pH 8.0 - ODV optical density x volume in ml  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号