首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic synthesis of sn-1,3-diacylglycerols (sn-1,3-DAG) in two steps without isolation of the intermediates was investigated. Firstly ethanolysis of extra virgin olive oil (EVO) using immobilized non-regiospecific lipase from Candida antarctica (Novozym 435) was carried out to obtain glycerol (Gly) and fatty acid ethyl esters (FAEE). In the second step the ethanolysis products have been re-esterificated testing different sn-1,3-regiospecific lipases, both immobilized and non-immobilized, in different reaction media, that is in the presence of solvents or in a solvent-free system, for different times, at different temperatures (12, 25 and 40 °C). The lipase from Rhizomucor miehei (Lipozyme IM) has been the most effective among the sn-1,3-specific lipases screened.  相似文献   

2.
Research work was objectively targeted to synthesize highly pure diacylglycerol (DAG) with glycerolysis of soybean oil in a solvent medium of t-butanol. Three commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) were screened, and Novozym 435 was the best out of three candidates. Batch reaction conditions of the enzymatic glycerolysis, the substrate mass ratio, the reaction temperature and the substrate concentration, were studied. The optimal reaction conditions were achieved as 6.23:1 mass ratio of soybean oil to glycerol, 40% (w/v) of substrate concentration in t-butanol and reaction temperature of 50 °C. A two-stage molecular distillation was employed for purification of DAG from reaction products. Scale-up was attempted based on the optimized reaction conditions, 98.7% (24 h) for the conversion rate of soybean oil, 48.5% of DAG in the glycerolysis products and 96.1% for the content of DAG in the final products were taken in account as the results.  相似文献   

3.
A lipase from the Burkholderia cepacia strain G63 immobilized on resin was used for the resolution of ketoprofen. To study its catalytic properties in enantioselective esterication, different alcohols and solvents were tested to select the most suitable acyl acceptor and reaction medium. Compared with the low activity of the free lipase, the enzyme activity and E value of the immobilized lipase were significantly enhanced. The enantioselectivity of the immobilized lipase could also be markedly improved by adding a small amount of 18-crown-6. RSM was employed to optimize the reaction parameters. The optimal reaction conditions were: reaction time 22.50 h, additives dosage 0.4322 g (0.33 mmol/mL), and substrate molar ratio 54.11:1. Under optimal conditions, the maximal E value was up to 10.01, which exhibited a better enantioselectivity than some commercial lipases, such as Novozym 435, Lipozyme RM IM and LipozymeTL IM.  相似文献   

4.
The objective of presented study was to maximize yields of 2-methylbutyl esters, derived by transesterification reactions mediated by sn-1,3-specific lipases, through engineering of reaction medium. Effects of water and diethylamine (DEA) concentrations on the efficiency of plant oils 2-methylbutanolysis, catalyzed by either mycelium-bound Mucor circinelloides lipase (powder) or commercial immobilized lipase Lipozyme TL IM, were determined. Water content monitoring in reaction mixtures enabled to optimize the initial water content in terms of preventing the dehydration of enzyme’s microenvironment and increasing 2-methylbutyl esters yields. These yields were found to be increased by addition of either suitable amounts of water (0.5–1.5%) or diethylamine (10–30?mM) to the mixture of substrates. The presented results suggest that at low concentrations, diethylamine molecules contribute to retaining water in the microenvironment of enzyme that gives rise to increased transesterification yields and significantly reduced amounts of residual mono- and 1,2-diacyl-glycerols.  相似文献   

5.
脂肪酶协同催化猪油合成生物柴油工艺研究   总被引:1,自引:0,他引:1  
探讨了以乙酸甲酯为酰基受体两种脂肪酶协同催化猪油转酯合成生物柴油的工艺条件。首先利用单因子试验确定2种固定化脂肪酶Novozym435、Lipozyme TLIM单独作为催化剂时的最佳酶用量为40%,反应温度为50℃,乙酸甲酯用量为14(相对于油的摩尔比)。在此基础上,采用3因素5水平和3个中心点的中心组分旋转设计法研究了上述2种脂肪酶协同使用时脂肪酶用量(g/g)、混合酶的配比(%/%)以及乙酸甲酯用量诸因素共同作用对转酯反应转化率的影响。优化后的反应条件为:总酶用量为40%,混合酶配比为50/50,乙酸甲酯用量为14,在该条件下甲酯得率可达97.6%,比同质量的Novozym435、Lipozyme TLIM的催化活性分别高出7.6%、22.3%。表明脂肪酶协同催化猪油合成生物柴油工艺可以较好地提高甲酯得率,并且节约生产成本。  相似文献   

6.
Lipase PS-30 (pseudomonas cepacia) and Lipase F (Rhizopus oryzae), immobilized within a phyllosilicate sol-gel matrix, catalyzed the esterification of glycerol with short, medium and long-chain fatty acids to produce mono (MAG), di (DAG) and tri (TAG) acylglycerols. The results from the above esterification reactions were compared to reactions using a commercially available immobilized lipase, Lipozyme IM-60. Time course studies showed that free Lipase PS-30 or Lipase F enhanced esterification reactions with the use of silica-supported glycerol. In contrast, immobilized Lipase PS-30-catalyzed reactions occurred at the same conversion rate when using either free or silica-supported glycerol. For immobilized Lipase F and Lipozyme IM-60 reactions, the use of silica-supported glycerol favored the production of DAG and TAG over MAG. All three immobilized lipases could be reused for acylglycerol production.  相似文献   

7.
Lipids enriched in polyunsaturated fatty acids are very susceptible to oxidation, causing the formation of potentially harmful oxidized products. Hence, it is critical to keep the temperature as low as possible during reaction and storage. In this study, five commercial immobilized lipases were evaluated for their capability to produce novel structured lipids (SLs) enriched with medium-chain fatty acids (MCFAs) through acidolysis of single cell oil (SCO) with capric acid. Among the examined lipases, NS40086 and Lipozyme RM IM showed the highest incorporation degree. The acidolysis reactions resulted in an obvious variation in the fatty acids composition as well as their positional distribution. The obtained SLs contained (33.58 %–34.09 %) capric acid at sn-1, 3 positions with increasing the content of arachidonic acid at the sn-2 position up to (49.82 %–50.25 %). The NS40086 lipase displayed 1, 3 regiospecificity towards the TAG of SCO. The acidolysis reactions using NS40086 lipase resulted in a generation of 23 TAG molecular species containing capric acid. Moreover, the NS40086 lipase was more active than Lipozyme RM IM at relatively low temperatures (35 °C and 40 °C), which could be used effectively as a promising biocatalyst in lipid synthesis.  相似文献   

8.
The enzymatic synthesis of biodiesel by a high-pressure semi-continuous process in near-critical carbon dioxide (NcCO(2)) was studied. Biodiesel synthesis was evaluated in both batch and semi-continuous systems to develop an effective process. Batch processing demonstrated the advantageous properties of NcCO(2) as an alternative reaction medium. Three immobilized lipases (Novozym 435, Lipozyme RM IM, and Lipozyme TL IM from Novozymes) were tested, with Lipozyme TL IM the most effective, showing the highest conversion. Biodiesel conversion from several edible and non-edible oil feedstocks reached >92%. Higher conversion (99.0%) was obtained in a shorter time by employing repeated batch processes with optimized conditions: 44.3 g (500 mM) canola oil, a substrate molar ratio (methanol:oil) of 3:1, an enzyme loading of 20 wt% (of the oil used), at 30 °C, 100 bar, and 300 rpm agitation. The enzyme maintained 80.2% of its initial stability after being reused eight times. These results suggest that this method produces biodiesel energy-efficiently and environment-friendly.  相似文献   

9.
Esters of cinnamyl alcohol find many applications in food, cosmetic and pharmaceutical industries as flavor and fragrance compounds. The current work focuses on the synthesis of cinnamyl laurate from cinnamyl alcohol and lauric acid, including screening of various immobilized lipases and optimization of reaction conditions such as catalyst loading, speed of agitation, mole ratio and temperature. Among different lipases screened such as Novozym 435, Lipozyme RM IM and Lipozyme TL IM, Novozym 435 was found to be the best catalyst with 60% conversion in 2 h at 30 °C for equimolar quantities of the reactants using 0.33% (w/v) of catalyst and toluene as solvent. An ordered bi–bi mechanism with dead-end complex of lauric acid was found to represent the kinetic data.  相似文献   

10.
《Process Biochemistry》2010,45(5):738-743
Diacylglycerol (DAG) production by glycerolysis of glycerol with tuna oil was performed using lipases from Rhizomucor miehei (Lipozyme RMIM) and Candida antarctica (Novozyme 435). Lipozyme RMIM caused a clear estrific positional specificity in HPLC analysis and then the Lipozyme RMIM was chosen for the production of DAG. Moreover, the reaction parameter for DAG synthesis was determined by measuring mole ratio of glycerol/tuna oil, amount of enzyme, temperature and water contents. The optimal mole ratio for glycerol/tuna oil was established to be 3:1. Optimal conditions of lipase, water and temperature were 10%, 10% and 35 °C, respectively. Therefore, we have synthesized DAG from tuna oil under these optimal conditions and investigated the effect of the synthesized DAG on body weight and plasma biochemical markers of obesity in C57BL/6J mice. The consumption of DAG diet has effectively lessened body weight gain and final plasma total cholesterol, triacylglycerol and glucose levels compared to the high triacylglycerol (TAG) group.  相似文献   

11.
Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30–50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4–10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.  相似文献   

12.
Both stability and catalytic activity of two commercial immobilized lipases were investigated in the presence of different organic solvents in ultrasound-assisted system. In a general way, for Novozym 435, the use of ethanol as solvent led to a loss of activity of 35% after 10 h of contact. The use of iso-octane conducted to a gradual increase in lipase activity in relation to the contact time, reaching a maximum value of relative activity of 126%. For Lipozyme RM IM, after 5 h of exposure, the enzyme presented no residual activity when ethanol was used as solvent. The solvents tert-butanol and iso-octane showed an enhancement of about 20 and 17% in the enzyme activity in 6 h of exposure, respectively. Novozym 435 and Lipozyme IM presented high stability to storage after treatment under ultrasound-assisted system using n-hexane and tert-butanol as solvents.  相似文献   

13.
Abstract

Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Castor bean lipase (CBL) were immobilized on celite by deposition from aqueous solution by the addition of hexane. Lipolytic performance of free and immobilized lipases were compared and optimizations of lipolytic enzymatic reactions conditions were performed by free and immobilized derivatives using olive oil as substrate. Afterwards, the influence on lipolysis of castor oil of free lipases and immobilized lipase derivatives have been studied in the case of production of ricinoleic acid. All of the lipases performances were compared and enzyme derivative was selected to be very effective on the production of ricinoleic acid by lipolysis reaction. Various reaction parameters affecting the production of ricinoleic acid were investigated with selected the enzyme derivative.

The maximum ricinoleic acid yield was observed at pH 7–8, 50°C, for 3 hours of reaction period with immobilized 1,3-specific PPL on celite. The kinetic constants Km and Vmax were calculated as 1.6 × 10?4 mM and 22.2 mM from a Lineweaver–Burk plot with the same enzyme derivative. To investigate the operational stability of the lipase, the three step lipolysis process was repeated by transferring the immobilized lipase to a substrate mixture. As a result, the percentange of conversion after usage decreased markedly.  相似文献   

14.
The present work focuses on the thermodynamic interpretation of the lauryl oleate biosynthesis in high-pressure carbon dioxide. Lipase-catalyzed lauryl oleate production by oleic acid esterification with 1-dodecanol over immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) was successfully performed in a sapphire window batch stirred tank reactor (BSTR) using dense CO(2) as reaction medium. The experiments were planned to elucidate the pressure effect on the reaction performance. With increasing the pressure up to 10 MPa, the catalytic efficiency of the studied enzyme improved rising up to a maximum and decreased at higher pressure values. Kinetic observations, exhibiting that dense CO(2) expanded reaction mixture in subcritical conditions led to higher performance than when diluted in a single supercritical phase, were elucidated by phase-equilibrium arguments. The experimental results were justified with emphasis on thermodynamic interpretation of the studied system. Particularly, the different reaction performances obtained were related to the position of the operating point with respect to the location of liquid-vapor phase boundaries of the reactant fatty acid/alcohol/CO(2) ternary system. The outlook for exploitation of CO(2) expanded phase at lower pressure compared to supercritical phase, with heterogeneous system in which the solid catalyst particles are exposed to dense CO(2) expanded reaction mixture, in developing new biotransformation schemes is promising.  相似文献   

15.
Enzymatic transesterification of soybean oil with methanol and ethanol was studied. Of the nine lipases that were tested in the initial screening, lipase PS from Pseudomonas cepacia resulted in the highest yield of alkyl esters. Lipase from Pseudomonas cepacia was further investigated in immobilized form within a chemically inert, hydrophobic sol-gel support. The gel-entrapped lipase was prepared by polycondensation of hydrolyzed tetramethoxysilane and iso-butyltrimethoxysilane. Using the immobilized lipase PS, the effects of water and alcohol concentration, enzyme loading, enzyme thermal stability, and temperature in the transesterification reaction were investigated. The optimal conditions for processing 10 g of soybean oil were: 35 degrees C, 1:7.5 oil/methanol molar ratio, 0.5 g water and 475 mg lipase for the reactions with methanol, and 35 degrees C, 1:15.2 oil/ethanol molar ratio, 0.3 g water, 475 mg lipase for the reactions with ethanol. Subject to the optimal conditions, methyl and ethyl esters formation of 67 and 65 mol% in 1h of reaction were obtained for the immobilized enzyme reactions. Upon the reaction with the immobilized lipase, the triglycerides reached negligible levels after the first 30 min of the reaction and the immobilized lipase was consistently more active than the free enzyme. The immobilized lipase also proved to be stable and lost little activity when was subjected to repeated uses.  相似文献   

16.
In human milk fat (HMF), palmitic acid (20–30%), the major saturated fatty acid, is mostly esterified at the sn-2 position of triacylglycerols, while unsaturated fatty acids are at the sn-1,3 positions, conversely to that occurring in vegetable oils.This study aims at the production of HMF substitutes by enzyme-catalyzed interesterification of tripalmitin with (i) oleic acid (system I) or (ii) omega-3 polyunsaturated fatty acids (omega-3 PUFA) (system II) in solvent-free media. Interesterification activity and batch operational stability of commercial immobilized lipases from Rhizomucor miehei (Lipozyme RM IM), Thermomyces lanuginosa (Lipozyme TL IM) and Candida antarctica (Novozym 435) from Novozymes, DK, and Candida parapsilosis lipase/acyltransferase immobilized on Accurel MP 1000 were evaluated. After 24-h reaction at 60 °C, molar incorporation of oleic acid was about 27% for all the commercial lipases tested and 9% with C. parapsilosis enzyme. Concerning omega-3 PUFA, the highest incorporations were observed with Novozym 435 (21.6%) and Lipozyme RM IM (20%), in contrast with C. parapsilosis enzyme (8.5%) and Lipozyme TL IM (8.2%). In system I, Lipozyme RM IM maintained its activity for 10 repeated 23-h batches while for Lipozyme TL IM, Novozym 435 and C. parapsilosis enzyme, linear (half-life time, t1/2 = 154 h), series-type (t1/2 = 253 h) and first-order (t1/2 = 34.5 h) deactivations were respectively observed. In system II, Lipozyme RM IM showed linear deactivation (t1/2 = 276 h), while Novozym 435 (t1/2 = 322 h) and C. parapsilosis enzyme (t1/2 = 127 h), presented series-type deactivation. Both activity and stability of the biocatalysts depended on the acyl donor used.  相似文献   

17.
The aim of this work was to produce docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) enriched acylglycerols by alcoholysis of tuna and sardine oils, respectively, using isobutanol and 1-butanol as acyl-acceptors. The alcoholysis reactions were catalyzed by lipases Lipozyme® TL IM from Thermomyces lanuginosus and lipase QLG® from Alcaligenes sp., because these lipases have shown selectivity towards DHA and EPA, respectively. Studies were made to determine the influence of reaction time, alcohol/oil molar ratio, lipase amount and temperature. In the optimized conditions for the alcoholysis of tuna and sardine oils catalyzed by Lipozyme TL IM and lipase QLG, respectively, the DHA and EPA contents were trebled (from 22 to 69% for DHA, and from 19 to 61% for EPA). The stability of both lipases was also determined. Although Lipozyme TL IM is much more stable in isobutanol than in ethanol, with the former the conversion attained after four reaction cycles was about 40% of the initial conversion. In similar conditions, the conversion obtained with lipase QLG was about 88% of the initial conversion. In addition, the separation of DHA enriched acylglycerols and isobutyl esters from an alcoholysis reaction was studied by liquid–liquid fractionation using the ethanol–water–hexane biphasic system. The DHA enriched acylglycerols obtained were 97.6% pure (64.4% DHA).  相似文献   

18.
Methods adapted from proteomics can directly characterize proteins present in immobilized biocatalysts. Complete hydrolysis followed by HPLC analysis of Tyr and Phe estimates total protein bound, and is preferable to conventional difference methods, as tested with subtilisin Carlsberg on silica. This new method shows that various treatments give quantitative desorption of proteins immobilized by adsorption. Intact desorbed proteins may be analyzed by electrospray mass spectrometry. The Candida antarctica lipase B from Novozyme 435 was shown to be heavily glycosylated, while the lipase from Lipozyme RM IM was a mixture of four N-terminally truncated forms. Peptides from selective cleavage were analyzed by tandem mass spectrometry, leading to automatic identification of proteins present. A second major protein present in Lipozyme RM IM was thus found to be alpha-amylase from Aspergillus oryzae. These methods should be valuable complements to activity measurements in understanding immobilized enzyme activity and stability.  相似文献   

19.
N-vanillylnonanamide (VAN) was successfully synthesized from vanillylamine hydrochloride by enzymatic catalysis in supercritical carbon dioxide (SC–CO2). Five commercial lipases, Novozyme 435, Lipozyme IM, Amano PS, Amano G and Sigma Candida cylindracea type VII, as biocatalysts for VAN synthesis were compared. Lipozyme IM exhibited best yields of tested lipases. Various parameters such as time, temperature, pressure and vanillylamine hydrochloride/nonanoic anhydride ratio that influenced the reaction were investigated. Nonanoic anhydride showed the best acyl donor of the employed substrates. An amidation yield of 40% was obtained when nonanoic anhydride and Lipozyme IM were used at 170 bar and 50 °C for 23 h in SC–CO2. Besides, addition of 2 mM divalent salts (CuCl2 and ZnCl2) significantly increased 11–23% yield of the VAN. The enzyme operational stability suggested that Lipozyme IM maintained over 50 °C of the initial activity for the synthesis of VAN after reuse for 69 h. Furthermore, in vitro, VAN behaved as a potential antibacterial against Escherichia coli.  相似文献   

20.
Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (≈90 mmol L(-1)). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex(?) 100 L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号