首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phosphodiesterase (PDE) inhibitor, enoximone, enhances the oxidation of fatty acids in cardiac myocytes. Since carbohydrate oxidation is tightly coupled and inversely related in cardiac tissue to fatty acid oxidation, this study was designed to investigate enoximone's effects on glucose metabolism in the heart. To determine if enoximone alters this reciprocal relationship, the effects of enoximone on [U-14C]glucose and [2-14C]pyruvate oxidation were determined in isolated cardiac myocytes. The effect of PDE inhibitors was also examined on pyruvate dehydrogenase complex (PDH) activity, a key component of oxidative glucose metabolism. Two PDE inhibitors, enoximone and milrinone, decreased PDH activity by 69 and 64%, respectively at 0.5 mM. This inhibition of PDH activity by enoximone was completely reversed after removing enoximone from the myocyte medium. PDH activity was unaffected by agents which alter cyclic nucleotide signaling: cGMP, dibutyryl cyclic AMP, and AMP. The effect of enoximone on [2-14C]pyruvate oxidation was similar to that on PDH. Interestingly, the oxidation of glucose was decreased 35% by 0.5 mM enoximone. In isolated rat heart mitochondria (RHM), enoximone decreased PDH activity by 37%. These studies suggest that PDE inhibitors decrease carbohydrate utilization by inhibiting the PDH complex in the heart. The inhibition of PDH by PDE inhibitors appears unrelated to their effects on cAMP or cGMP. This inhibition of PDH by PDE inhibitors may occur, at least in part, secondary to stimulating fatty acid oxidation.  相似文献   

2.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio. The flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase led to an increase in the pool concentrations of both glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate and inhibition of pyruvate formate lyase activity. Under such conditions, metabolism was homolactic. Lactose and to a lesser extent galactose supported less rapid growth, with a diminished flux through glycolysis, and a lower NADH/NAD+ ratio. Under such conditions, the major pathway bottleneck was most probably at the level of sugar transport rather than glyceraldehyde-3-phosphate dehydrogenase. Consequently, the pool concentrations of phosphorylated glycolytic intermediates upstream of glyceraldehyde-3-phosphate dehydrogenase decreased. However, the intracellular concentration of fructose-1,6-bisphosphate remained sufficiently high to ensure full activation of lactate dehydrogenase and had no in vivo role in controlling pyruvate metabolism, contrary to the generally accepted opinion. Regulation of pyruvate formate lyase activity by triose phosphates was relaxed, and mixed-acid fermentation occurred (no significant production of lactate on lactose) due mostly to the strong inhibition of lactate dehydrogenase by the in vivo NADH/NAD+ ratio.  相似文献   

3.
The rate of pyruvate oxidation by isolated rabbit heart mitochondria was inhibited by fatty acylcarnitine derivatives. The extent of inhibition by pyruvate oxidation in State 3 was greatest with palmitylcarnitine and only a minimal inhibition was observed with acetylcarnitine, while octanoylcarnitine or octanoate caused an intermediate extent of inhibition. Analyses of the intramitochondrial ATPADP and NADHNAD+ ratios under the different conditions of incubation indicated that it is unlikely that changes in either or both of these parameters were the primary negative effectors of the rate of pyruvate oxidation. A positive correlation between the decrease in the rate of pyruvate oxidation and the decrease in the level of free CoASH in the mitochondria was observed. Extraction and assay of the pyruvate dehydrogenase from rabbit heart mitochondria during the time course of the fatty acid-mediated inhibition of pyruvate oxidation indicated that pyruvate dehydrogenase was strongly inactivated when palmitylcarnitine was the fatty acid, while incubation with octanoate and acetylcarnitine resulted in less extensive inactivation of pyruvate dehydrogenase. Measurement of the effects of NADH, NAD+, acetyl-CoA, and CoASH on the inactivation of pyruvate dehydrogenase extracted from rabbit heart mitochondria indicated that NADH and acetyl-CoA activated the pyruvate dehydrogenasee kinase while CoASH strongly inhibited the kinase and NAD+ was without effect. In addition, palmityl-CoA and octanoyl-CoA had little, if any, effect on the pyruvate dehydrogenase kinase activity. It was observed that palmityl-CoA but not octanoyl-CoA strongly inhibited the activity of the extracted pyruvate dehydrogenase. Hence, it is concluded that (a) decreased mitochondrial CoASH levels, which essentially remove a potent inhibitor of the pyruvate dehydrogenase kinase, (b) possibly a diminished free CoASH supply, which may be utilized as a substrate for the active complex, and (c) direct inhibitory effects of palmityl-CoA on the active form of the pyruvate dehydrogenase complex combine to make palmitylcarnitine a much more potent inhibitor of mitochondrial pyruvate oxidation than shorter chain length acylcarnitine derivatives.  相似文献   

4.
Enalapril maleate (EM) is the salt of N-{(S)-1-(ethoxycarbonyl)-3-phenylpropyl}-L -alanyl-L -proline, used therapeutically as an anti-hypertensive agent. The effects of EM on some aspects of the energy metabolism and membrane properties of mitochondria from rat liver and kidney cortex were studied, but only the latter were significantly affected. With 0·8 mM of EM and 2-oxoglutarate as oxidizable substrate for isolated mitochondria from rat kidney cortex, the findings were: (a) inhibition of the respiratory rate in state III (37 per cent) and decrease (45 per cent) in respiratory control ratio (RCR), with only one addition of ADP; (b) reinforcement of the inhibition when a second addition of ADP was made; (c) no significant effect either on the rate of respiration in state IV or on the ADP/O ratio; (d) no effect on the ATPase activity of mitochondria from liver or kidney cortex; (e) inhibition of the transmembrane potential (Δψ) after a second addition of ADP; (f) inhibition of the 2-oxoglutarate dehydrogenase complex. It is suggested that in kidney mitochondria, EM interferes in the gluconeogenesis dependence of at least five substrates: 2-oxoglutarate, glutamine, glutamate, lactate, and pyruvate. Also EM may inhibit Na+/H+ exchange causing natriuresis.  相似文献   

5.
Mitochondrial pyruvate-supported respiration was studied in vitro under conditions known to exist following ischemia, i.e., elevated extramitochondrial Ca2+, Na+, and peroxide. Ca2+ alone (7-10 nmol/mg) decreased state 3 and increased state 4 respiration to 81 and 141% of control values, respectively. Sodium (15 mM) and/or tert-butyl hydroperoxide (tBOOH; up to 2,000 nmol/mg protein) alone had no effect on respiration; however, Na+ or tBOOH in combination with Ca2+ dramatically altered respiration. Respiratory inhibition induced by Ca2+ and tBOOH does not involve pyruvate dehydrogenase (PDH) inhibition since PDH flux increased linearly with tBOOH concentration (R = 0.96). Calcium potentiated tBOOH-induced mitochondrial NAD(P)H oxidation and shifted the redox state of cytochrome b from 67 to 47% reduced. Calcium (5.5 nmol/mg) plus Na+ (15 mM) decreased state 3 and increased state 4 respiratory rates to 55 and 202% of control values, respectively. Sodium- as well as tBOOH-induced state 3 inhibition required mitochondrial Ca2+ uptake because ruthenium red addition before Ca2+ addition negated the effect. The increase in state 4 respiration involved Ca2+ cycling since ruthenium red immediately returned state 4 rates back to control values. The mechanisms for the observed Ca2(+)-, Na(+)-, and tBOOH-induced alterations in pyruvate-supported respiration in vitro are discussed and a multifactorial etiology for mitochondrial respiratory dysfunction following cerebral ischemia in vivo is proposed.  相似文献   

6.
1. Monochloroacetate, dichloroacetate, trichloroacetate, difluoroacetate, 2-chloropropionate, 2,2'-dichloropropionate and 3-chloropropionate were inhibitors of pig heart pyruvate dehydrogenase kinase. Dichloroacetate was also shown to inhibit rat heart pyruvate dehydrogenase kinase. The inhibition was mainly non-competitive with respect to ATP. The concentration required for 50% inhibition was approx. 100mum for the three chloroacetates, difluoroacetate and 2-chloropropionate and 2,2'-dichloropropionate. Dichloroacetamide was not inhibitory. 2. Dichloroacetate had no significant effect on the activity of pyruvate dehydrogenase phosphate phosphatase when this was maximally activated by Ca(2+) and Mg(2+). 3. Dichloroacetate did not increase the catalytic activity of purified pig heart pyruvate dehydrogenase. 4. Dichloroacetate, difluoroacetate, 2-chloropropionate and 2,2'-dichloropropionate increased the proportion of the active (dephosphorylated) form of pyruvate dehydrogenase in rat heart mitochondria with 2-oxoglutarate and malate as respiratory substrates. Similar effects of dichloroacetate were shown with kidney and fat-cell mitochondria. Glyoxylate, monochloroacetate and dichloroacetamide were inactive. 5. Dichloroacetate increased the proportion of active pyruvate dehydrogenase in the perfused rat heart, isolated rat diaphragm and rat epididymal fat-pads. Difluoroacetate and dichloroacetamide were also active in the perfused heart, but glyoxylate, monochloroacetate and trichloroacetate were inactive. 6. Injection of dichloroacetate into rats starved overnight led within 60 min to activation of pyruvate dehydrogenase in extracts from heart, psoas muscle, adipose tissue, kidney and liver. The blood concentration of lactate fell within 15 min to reach a minimum after 60 min. The blood concentration of glucose fell after 90 min and reached a minimum after 120 min. There was no significant change in plasma glycerol concentration. 7. In epididymal fatpads dichloroacetate inhibited incorporation of (14)C from [U-(14)C]glucose, [U-(14)C]fructose and from [U-(14)C]lactate into CO(2) and glyceride fatty acid. 8. It is concluded that the inhibition of pyruvate dehydrogenase kinase by dichloroacetate may account for the activation of pyruvate dehydrogenase and pyruvate oxidation which it induces in isolated rat heart and diaphragm muscles, subject to certain assumptions as to the distribution of dichloroacetate across the plasma membrane and the mitochondrial membrane. 9. It is suggested that activation of pyruvate dehydrogenase by dichloroacetate could contribute to its hypoglycaemic effect by interruption of the Cori and alanine cycles. 10. It is suggested that the inhibitory effect of dichloroacetate on fatty acid synthesis in adipose tissue may involve an additional effect or effects of the compound.  相似文献   

7.
Disrupted energy metabolism, in particular reduced activity of cytochrome oxidase (EC 1.9.3.1), alpha-ketoglutarate dehydrogenase (EC 1.2.4.2) and pyruvate dehydrogenase (EC 1.2.4.1) have been reported in post-mortem Alzheimer's disease brain. beta-Amyloid is strongly implicated in Alzheimer's pathology and can be formed intracellularly in neurones. We have investigated the possibility that beta-amyloid itself disrupts mitochondrial function. Isolated rat brain mitochondria have been incubated with the beta-amyloid alone or together with nitric oxide, which is known to be elevated in Alzheimer's brain. Mitochondrial respiration, electron transport chain complex activities, alpha-ketoglutarate dehydrogenase activity and pyruvate dehydrogenase activity have been measured. Beta-amyloid caused a significant reduction in state 3 and state 4 mitochondrial respiration that was further diminished by the addition of nitric oxide. Cytochrome oxidase, alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase activities were inhibited by beta-amyloid. The K(m) of cytochrome oxidase for reduced cytochrome c was raised by beta-amyloid. We conclude that beta-amyloid can directly disrupt mitochondrial function, inhibits key enzymes and may contribute to the deficiency of energy metabolism seen in Alzheimer's disease.  相似文献   

8.
The oxidation of pyruvate is mediated by the pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12 and EC 1.6.4.3) whose catalytic activity is influenced by phosphorylation and by product inhibition. 2-Oxoglutarate and 3-hydroxybutyrate are readily utilized by brain mitochondria and inhibit pyruvate oxidation. To further elucidate the regulatory behavior of brain PDHC, the effects of 2-oxoglutarate and 3-hydroxyburyrate on the flux of PDHC (as determined by [1-14C]pyruvate decarboxylation) and the activation (phosphorylation) state of PDHC were determined in isolated, non-synaptic cerebro-cortical mitochondria in the presence or absence of added adenine nucleotides (ADP or ATP). [1-14C]Pyruvate decarboxylation by these mitochondria is consistently depressed by either 3-hydroxybutyrate or 2-oxoglutarate in the presence of ADP when mitochondrial respiration is stimulated. In the presence of exogenous ADP, 3-hydroxybutyrate inhibits pyruvate oxidation mainly through the phosphorylation of PDHC, since the reduction of the PDHC flux parallels the depression of PDHC activation state under these conditions. On the other hand, in addition to the phosphorylation of PDHC, 2-oxoglutarate may also regulate pyruvate oxidation by product inhibition of PDHC in the presence of 0.5 mM pyruvate plus ADP or 5 mM pyruvate alone. This conclusion is based upon the observation that 2-oxoglutarate inhibits [1-14C]pyruvate decarboxylation to a much greater extent than that predicted from the PDHC activation state (i.e. catalytic capacity) alone. In conjunction with the results from our previous study (Lai, J. C. K. and Sheu, K.-F. R. (1985) J. Neurochem. 45, 1861–1868), the data of the present study are consistent with the notion that the relative importance of the various mechanisms that regulate brain and peripheral tissue PDHCs shows interesting differences.  相似文献   

9.
Insulin, at a concentration of 1 mU/ml, stimulated glycogen synthase and pyruvate dehydrogenase about threefold in isolated rat adipocytes. Upon the removal of insulin, glycogen synthase activity remained in the activated state for 10 min and thereafter rapidly returned to basal level. On the other hand, insulin-stimulated pyruvate dehydrogenase activity remained elevated for at least 30 min. Isoproterenol (10−8m) stimulated phosphorylase and inhibited pyruvate dehydrogenase through the activation of β-adrenergic receptors. Addition of the β-antagonist, propranolol (10−5m), after isoproterenol reversed the action of isoproterenol on phosphorylase but not its action on pyruvate dehydrogenase. Dibutyryl cyclic AMP, when added to intact adipocytes, produced an effect on pyruvate dehydrogenase similar to that induced by isoproterenol. Our results indicate that both insulin and the β-agonist have a unique action on pyruvate dehydrogenase which is different from their effects on other enzymes such as glycogen synthase and phosphorylase.  相似文献   

10.
Bladder function is dependent upon cellular metabolism of substrates and the adequate generation of high-energy phosphate compounds. Partial outlet obstruction induces a marked decrease in bladder function which is associated with a significant decrease in the oxidative metabolism of glucose.The current investigation was designed to determine whether the time course of the decrease in mitochondrial oxidation in the hypertrophied urinary bladder is similar to the time course of the contractile dysfunction observed. In these studies we determined: 1) the rate of 14C-pyruvate metabolism to 14CO2 in control and obstructed tissue (1, 3, 5 and 7 days), and 2) the mitochondrial enzymatic activities of malate dehydrogenase and citrate synthase.The results can be summarized as follows: 1) The rate of pyruvate metabolism decreases by over 50% within one day following partial outlet obstruction, and remains at this level for the seven day period of study. 2) Kinetic analysis demonstrates that the change in enzymatic activity is related to a decrease in Vmax; the Kd for pyruvate is similar for control and after all time periods of obstruction. 3) The enzymatic activity of malate dehydrogenase and citrate synthase is reduced by over 50% within one day following partial obstruction, and remains at this level throughout the 7 day study period. These metabolic results correlate in time and duration with the decreased ability of the bladder to empty following partial outlet obstruction.  相似文献   

11.
The distribution of carbon flux at the pyruvate node was investigated in Lactococcus lactis under anaerobic conditions with mutant strains having decreased lactate dehydrogenase activity. Strains previously selected by random mutagenesis by H. Boumerdassi, C. Monnet, M. Desmazeaud, and G. Corrieu (Appl. Environ. Microbiol. 63, 2293-2299, 1997) were found to have single punctual mutations in the ldh gene and presented a high degree of instability. The strain L. lactis JIM 5711 in which lactate dehydrogenase activity was diminished to less than 30% of the wild type maintained homolactic metabolism. This was due to an increase in the intracellular pyruvate concentration, which ensures the maintained flux through the lactate dehydrogenase. Pyruvate metabolism was linked to the flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase, as previously postulated for the parent strain (C. Garrigues, P. Loubière, N. D. Lindley, and M. Cocaign-Bousquet (1997) J. Bacteriol. 179, 5282-5287, 1997). However, a strain (L. lactis JIM 5954) in which the ldh gene was interrupted reoriented pyruvate metabolism toward mixed metabolism (production of formate, acetate, and ethanol), though the glycolytic flux was not strongly diminished. Only limited production of acetoin occurred despite significant overflow of pyruvate. Intracellular metabolite profiles indicated that the in vivo glyceraldehyde-3-phosphate dehydrogenase activity was no longer flux limiting in the Deltaldh strain. The shift toward mixed acid fermentation was correlated with the lower intracellular trioses phosphate concentration and diminished allosteric inhibition of pyruvate formate lyase.  相似文献   

12.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

13.
用容重分别为1.20和1.55 g·cm-3的土壤进行盆栽试验,研究了土壤紧实胁迫对‘津春4号’黄瓜根系呼吸代谢的影响.结果表明: 土壤紧实胁迫条件下,黄瓜根系中丙酮酸脱羧酶、乙醇脱氢酶和乳酸脱氢酶活性显著提高;无氧呼吸主要产物(乙醇、乙醛和乳酸)含量显著升高;参与有氧呼吸的苹果酸脱氢酶、琥珀酸脱氢酶和异柠檬酸脱氢酶活性显著下降,丙酮酸和琥珀酸含量显著提高,苹果酸含量显著下降.说明在土壤紧实胁迫条件下,黄瓜根系的有氧呼吸受到显著抑制,无氧呼吸过程加强.  相似文献   

14.
We tested the hypothesis that a high-fat diet (75% fat; 5% carbohydrates; 20% protein), for which 15% of the fat content was substituted with n-3 fatty acids, would not exhibit the diet-induced increase in pyruvate dehydrogenase kinase (PDK) activity, which is normally observed in human skeletal muscle. The fat content was the same in both the regular high-fat diet (HF) and in the n-3-substituted diet (N3). PDK activity increased after both high-fat diets, but the increase was attenuated after the N3 diet (0.051 +/- 0.007 and 0.218 +/- 0.047 min(-1) for pre- and post-HF, respectively; vs. 0.073 +/- 0.016 and 0.133 +/- 0.032 min(-1) for pre- and post-N3, respectively). However, the active form of pyruvate dehydrogenase (PDHa) activity decreased to a similar extent in both conditions (0.93 +/- 0.17 and 0.43 +/- 0.09 mmol/kg wet wt pre- and post-HF; vs. 0.87 +/- 0.19 and 0.39 +/- 0.05 mmol/kg wet wt pre- and post-N3, respectively). This suggested that the difference in PDK activity did not affect PDHa activation in the basal state, and it was regulated by intramitochondrial effectors, primarily muscle pyruvate concentration. Muscle glycogen content was consistent throughout the study, before and after both diet conditions, whereas muscle glucose-6-phosphate, glycerol-3-phosphate, lactate, and pyruvate were decreased after the high-fat diets. Plasma triglycerides decreased after both high-fat diets but decreased to a greater extent after the N3, whereas plasma free fatty acids increased after both diets, but to a lesser extent after the N3. In summary, PDK activity is decreased after a high-fat diet that is rich in n-3 fatty acids, although PDHa activity was unaltered. In addition, our data demonstrated that the hypolipidemic effect of n-3 fatty acids occurs earlier (3 days) than previously reported and is evident even when the diet has 75% of its total energy derived from fat.  相似文献   

15.
Acetolactate synthase (ALS; EC 4.1.3.18) inhibition is the primary mechanism of action of imazethapyr (IM). However, the precise mechanisms that links ALS inhibition with plant death have not been elucidated. Supply of IM to pea ( Pisum sativum L) plants produced an immediate cessation of growth, caused a 50% inhibition of the in vivo ALS activity within 1 day of treatment, and a remarkable accumulation (2.7-times) of free amino acids after 3 days. Carbohydrates (soluble and starch) were accumulated in both leaves and roots. Accumulation of soluble sugars in roots preceded that of starch in leaves, suggesting that the accumulation of carbohydrates in leaves is not the reason for the arrested root growth. A transient pyruvate accumulation was observed in roots, 1 day after the onset of IM supply. This was coincident with an increase in pyruvate decarboxylase (EC 4.1.1.1), and later increases in alcohol dehydrogenase (EC 1.1.1.1), lactate dehydrogenase (EC 1.1.1.27), and alanine amino transferase (EC 2.6.1.2) activities. This enhancement of fermentative activities was coincident with a slight decrease in aerobic respiration. The overall data suggest that the impairment of ALS activity may lead to a fermentative metabolism that may be involved in growth inhibition and plant death.  相似文献   

16.
Glucose metabolism and its hormonal regulation have been investigated in isolated enterocytes from rat small intestine. About 70% of the glucose consumed by the cells was transformed into lactate, 5% into pyruvate, and 4% into alanine. The remaining 20% was oxidized. Among several tested gastrointestinal peptides and hormones, only vasoactive intestinal peptide (VIP) was found to affect the metabolic fate of glucose. VIP (10(-7) M) induced a 40% inhibition of glucose oxidation without significant modification of either glucose uptake or production of lactate, pyruvate, and alanine. This acute inhibition was dose-dependent (Ki = 3.10(-11) M) and appeared to be dependent on the stimulation of cAMP production (K0.5 = 3.10(-9) M) since dibutyryl-cAMP and forskolin reproduced all the effects of VIP. Similar inhibition of cell respiration by VIP was observed when pyruvate, fructose, and dihydroxyacetone were used as substrates, while the oxidation of glutamine, ketone bodies, and octanoate was unaffected, suggesting that the peptide acts on pyruvate metabolism. The suppression of VIP effects by dichloroacetate (5 mM) and pyruvate (10 mM) and the significant decrease (18%) of the activity of the pyruvate dehydrogenase complex after incubation of the cells with the neuropeptide, support the hypothesis that the effects of VIP on glucose oxidation may occur through an inhibition of the pyruvate dehydrogenase complex. The total suppression of the inhibitory effects of VIP by sodium 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate, a potent inhibitor of long-chain fatty acid oxidation, suggests that VIP did not affect the pyruvate dehydrogenase directly, but more probably acted through modifications of fatty acid oxidation.  相似文献   

17.
The alpha-subunit of pyruvate dehydrogenase and succinyl-CoA synthetase are phosphorylated after incubation of cardiac mitochondria from genetically diabetic mice with [gamma-32P]ATP. There is significantly increased incorporation of 32P into pyruvate dehydrogenase from diabetic mice when compared to controls. The enhanced rate of pyruvate dehydrogenase phosphorylation correlates well with the previously reported defective oxidative metabolism and decreased activity of this enzyme from diabetic mice. The relationship between abnormal mitochondrial function and development of cardiomyopathy in the diabetic mice has been studied further by in vivo estrone treatment. The results indicate that ultrastructural alterations of myocardium are closely associated with the defective pyruvate oxidation (via phosphorylation of pyruvate dehydrogenase) and both processes can be prevented by 7-12 weeks estrone treatment.  相似文献   

18.
Pyruvate dehydrogenase and phosphoenolpyruvate carboxykinase are important enzymes in the regulation of muscle pyruvate metabolism and their in vitro measured activities have been studied in muscle from rested and exercised rats. In addition, the muscle concentration of metabolic intermediates associated with pyruvate metabolism has been measured after exercise. Phosphoenolpyruvate concentration was decreased to less than half the value found in rested muscle but pyruvate concentration did not change. This suggests an increase in the in vivo rate of conversion of phosphoenolpyruvate to pyruvate. Concentrations of malate and aspartate increased two- to threefold which suggests that oxaloacetate concentration was also increased. An increase in oxaloacetate availability would increase acetyl CoA metabolism and therefore would increase pyruvate dehydrogenase activity in vivo. The basal activity of pyruvate dehydrogenase measured in vitro increased approximately twofold after 2 hr of exercise and returned to control values 5 min after the cessation of exercise. Total pyruvate dehydrogenase activity (activated to the maximal extent) was not changed by exercise. Muscle PEPCK activity was also increased during exercise suggesting an increased rate of conversion of oxaloacetate to pyruvate to provide net oxidation of oxaloacetate and other citric acid cycle intermediates. Results of this study demonstrate that the rates of formation and metabolism of pyruvate are increased during exercise.  相似文献   

19.
Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase.  相似文献   

20.
Mechanisms regulating adipose tissue pyruvate dehydrogenase   总被引:21,自引:20,他引:1  
1. Isolated rat epididymal fat-cell mitochondria showed an inverse relationship between ATP content and pyruvate dehydrogenase activity consistent with competitive inhibition of pyruvate dehydrogenase kinase by ADP. At constant ATP concentration pyruvate rapidly activated pyruvate dehydrogenase in fat-cell mitochondria, an observation consistent with inhibition of fat-cell pyruvate dehydrogenase kinase by pyruvate. Pyruvate dehydrogenase in fat-cell mitochondria was also activated by nicotinate (100mum) and by extramitochondrial Na(+) (replacing K(+)) but not by ouabain or insulin. 2. In rat epididymal fat-pads incubated in vitro pyruvate dehydrogenase was activated by addition of insulin in the absence of substrate or in the presence of glucose (10mm) or fructose (10mm). Glucose and fructose activated the dehydrogenase in the absence or in the presence of insulin, and pyruvate also activated in the absence of insulin. It is concluded that extracellular glucose, fructose and pyruvate may activate the dehydrogenase by raising intracellular pyruvate and that insulin may activate the dehydrogenase by some other mechanism. 3. Ouabain (300mum) and medium in which K(+) was replaced by Na(+), activated pyruvate dehydrogenase in epididymal fat-pads. Prostaglandin E(1) (1mug/ml), 5-methylpyrazole-3-carboxylate (10mum) and nicotinate (10mum), which are as effective as insulin as inhibitors of lipolysis and which like insulin lower tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate), did not activate pyruvate dehydrogenase. Higher concentrations of prostaglandin E(1) (10mug/ml) and nicotinate (100mum) produced some activation of the dehydrogenase. 4. It is concluded that the activation of pyruvate dehydrogenase by insulin is not due to the antilipolytic effect of the hormone and that the action of insulin in lowering adipose-cell concentrations of cyclic AMP does not afford an obvious explanation for the effect of the hormone on pyruvate dehydrogenase. The possibility that the effects of insulin, ouabain and K(+)-free medium may be mediated by Ca(2+) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号