首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial acid hydrolysis and methanolysis released disaccharides and disaccharide methylglycosides from the glycoproteins, ovomucoid and porcine gastric mucin in amounts of 0.5--7 microgram disaccharide per mg of glycoprotein. These disaccharides were fractionated by gas chromatography as the trimethylsilyl (Me3Si) derivatives. The composition of recovered disaccharides has been determined by hydrolysis and rechromatography of the Me3Si monosaccharides. The intersaccharide linkages of the disaccharides have been determined by electron impact mass spectrometry. This simple and rapid method can give structural information on small glycoprotein samples.  相似文献   

2.
3.
Proteomics can be thought of as an attempt to understand the information encoded in genomic sequences from the perspective of proteins; i.e. the structure, function and regulation of biological processes at the protein level. In practice it stands in stark contrast to the hypothesis-driven serial approach practiced in the last century that was so successful for protein chemists and is built on the basic understanding of protein physicochemical properties developed during that era. Proteomics attempts to study biological processes comprehensively or globally by systematic parallel analysis of proteins expressed in a cell. While there are many analytical techniques in use and under development in proteomics, mass spectrometry is currently one of the field's most important discovery-based tools. This article will review some of the current approaches for qualitative and quantitative uses of tandem mass spectrometry in the field of proteomics specifically avoiding a discussion of the use of gel electrophoresis prior to mass spectrometry. Electronic Publication  相似文献   

4.
The technique of positive- and negative-ion fast atom bombardment mass spectrometry has been shown to be capable of producing molecular mass and useful fragmentation information for the structural elucidation of chlorogenic acids. The mass spectra of chlorogenic acid and the related compounds 3′-O-methylchlorogenic acid, neochlorogenic acid, 4,5-dicaffeoyl quinic acid and 1,5-dicaffeoyl quinic acid are compared with those obtained by electron impact mass spectrometry.  相似文献   

5.
Lecithins directly introduced on a gold wire near the electron beam under ammonia chemical ionization conditions, give mass spectra showing the (M + 1)+ ion and ions of structurally significant fragments. Of particular interest is the identification of a substitution-like reaction of ammonia on the head group of the phosphatidylcholines. No instrumental modifications is required.  相似文献   

6.
Protein phosphorylation events are key regulators of cellular signaling processes. In the era of functional genomics, rational drug design programs demand large-scale high-throughput analysis of signal transduction cascades. Significant improvements in the area of mass spectrometry-based proteomics have provided exciting opportunities for rapid progress toward global protein phosphorylation analysis. This review summarizes several recent advances made in the field of phosphoproteomics with an emphasis placed on mass spectrometry instrumentation, enrichment methods and quantification strategies. In the near future, these technologies will provide a tool that can be used for quantitative investigation of signal transduction pathways to generate new insights into biologic systems.  相似文献   

7.
Because of the recognized inaccuracy and unreliability of currently available methods for the quantification of histamine in biological fluids, a method for quantification of urinary histamine by stable isotope dilution assay with negative ion chemical ionization mass spectrometry has been developed. Following the addition of [2H4]histamine to 1 ml of urine, histamine is extracted into butanol, back-extracted into HCl, derivatized to the pentafluorobenzyl derivative (CH2C6F5)3-histamine, extracted into methylene chloride, and then quantified with negative ion chemical ionization mass spectrometry by selected ion monitoring of the ratio of ions mz430434. Twenty samples can be assayed in 2 days. Precision of the assay is ±2.7% and the accuracy is 97.6%. Lower limits of sensitivity are approximately 100–500 fg injected on-column. This assay provides a very sensitive, accurate, and efficient method for the quantification of histamine in human urine.  相似文献   

8.
糖链是重要的生物信息分子,在许多生理和病理过程中都发挥着独特作用。糖链结构非常复杂,具有微观不均一性,其分析和结构解析一直是糖生物学研究的瓶颈。质谱具有灵敏度高、可获得多种结构信息和适于分析混合物等优点,是糖链定性定量分析的一种理想手段。电喷雾电离质谱和基质辅助激光解析电离质谱两大生物质谱技术已被广泛应用于糖链的相对分子质量指纹谱分析、序列和连接方式测定及相对定量分析。对近年来以质谱为主要分析手段的糖链分析方法研究进展做一综述。  相似文献   

9.
Timely classification and identification of bacteria is of vital importance in many areas of public health. Mass spectrometry-based methods provide an attractive alternative to well-established microbiologic procedures. Mass spectrometry methods can be characterized by the relatively high speed of acquiring taxonomically relevant information. Gel-free mass spectrometry proteomics techniques allow for rapid fingerprinting of bacterial proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or, for high-throughput sequencing of peptides from protease-digested cellular proteins, using mass analysis of fragments from collision-induced dissociation of peptide ions. The latter technique uses database searching of product ion mass spectra. A database contains a comprehensive list of protein sequences translated from protein-encoding open reading frames found in bacterial genomes. The results of such searches allow the assignment of experimental peptide sequences to matching theoretical bacterial proteomes. Phylogenetic profiles of sequenced peptides are then used to create a matrix of sequence-to-bacterium assignments, which are analyzed using numerical taxonomy tools. The results thereof reveal the relatedness between bacteria, and allow the taxonomic position of an investigated strain to be inferred.  相似文献   

10.
Metabolomics has been defined as the quantitative measurement of all low molecular weight metabolites (sugars, amino acids, organic acids, fatty acids and others) in an organism's cells at a specified time under specific environmental/biological conditions. Currently, there is considerable interest in developing a single method of derivatization and separation that satisfies the needs for metabolite analysis while recognizing the many chemical classes that constitute the metabolome. Chemical derivatization considerably increases the sensitivity and specificity of gas chromatography–mass spectrometry for compounds that are polar and have derivatizable groups. Microwave-assisted derivatization (MAD) of a set of standards spanning a wide range of metabolites of interest demonstrates the potential of MAD for metabolic profiling. A final protocol of 150 W power for 90 s was selected as the derivatization condition, based upon the study of each chemical class. A study of the generation of partially derivatized components established the conditions where this could potentially be a problem; the use of greater volumes of reagent ensured this would not arise. All compounds analyzed by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry in a standard mixture showed good area ratio reproducibility against a naphthalene internal standard (RSD < 10% in all but one case). Concentrations tested ranged from 1 μg/mL to 1000 μg/mL, and the calibration curves for the standard mixtures were satisfactory with regression coefficients generally better than 0.998. The application to gas chromatography–quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for a typical reference standard of relevance to metabolomics is demonstrated.  相似文献   

11.
Pigment extracts from Emiliania huxleyi (Lohm.) Hay et Mohler (strains CCMP 370, CCMP 373, and NIOZ CH 24) were analyzed using high-performance liquid chromatography (HPLC) on highly efficient monomeric and polymeric octadecylsilica columns using either ammonium acetate or pyridine containing mobile phases. Both systems showed chromatographic profiles with peaks corresponding to pigments of uncertain structure: those of the polar and nonpolar chlorophyll c forms and one peak whose on-line diode array spectrum resembled that of the fucoxanthin acyloxy derivatives. Liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry gave a molecular mass of 786 units for the unknown carotenoid. The pigments corresponding to each of these fractions were isolated and their visible spectra recorded in various solvents. Samples of the isolated pigments were subjected to analysis by fast atom bombardment mass spectrometry that confirmed a molecular mass of 786 for the unknown carotenoid and gave a mass of 654 units for the polar chlorophyll c 3, compatible with the monovinylic structure previously suggested. The detection of these new pigments calls for attention on the use of correct methodologies when HPLC pigment signatures are used to study the taxonomic composition of natural phytoplankton populations.  相似文献   

12.
Protein-RNA complexes play many important roles in diverse cellular functions. They are involved in a wide variety of different processes in growth and differentiation at the various stages of the cell cycle. As their function and catalytic activity are directly coupled to the structural arrangement of their components--proteins and ribonucleic acids--the investigation of protein-RNA interactions is of great functional and structural importance. Here we discuss the most prominent examples of protein-RNA complexes and describe some frequently used purification strategies. We present various techniques and applications of mass spectrometry to study protein-RNA complexes. We discuss the analysis of intact complexes as well as proteomics-based and crosslinking-based approaches in which proteins are cleaved into smaller peptides. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

13.
The research draws on experimental and theoretical data about energetics and kinetics of mass spectrometric (MS) reactions of glycyl homopenta– ( G5 ) and glycyl homohexapeptides ( G6 ). It shows the great applicability of the methods of quantum chemistry to predict MS profile of peptides using energetics of collision induced dissociation (CID) fragment species. Mass spectrometry is among irreplaceable methods, providing unambiguous qualitative, quantitative and structural information about analytes, applicable to many scientific areas like environmental chemistry; food chemistry; medicinal chemistry; and more. Our study could be considered of substantial interdisciplinary significance, where MS proteomics is widely used. The experimental design involves electrospray ionization (ESI) and CID MS/MS. Theoretical design is based on ab initio and density functional theory (DFT) methods. Experimental MS and theoretical free Gibbs energies as well as rate constants of fragment reactions are compared. The thermodynamic encompasses gas–phase and polar continuum analysis, including polar protic and aprotic solvents within temperature T = 10–500 K; dielectric constant ε = 0–78, pH, and ionic strengths μ = 0.001–1.0 mol dm?1. There are computed and discussed 39 protonated forms of peptides at amide N– and –(NHC)= O centers; corresponding fragment ions studying their thermodynamic stability depending on experimental conditions. A correlation analysis between molecular conformations of parent ions and fragment species; their proton accepting ability and internal energy distribution is carried out. Data about ionization potentials (IPs) and electron affinities (EAs) are discussed, as well.  相似文献   

14.
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   

15.
This video presents a protocol for the mass spectrometrical analysis of volatile and oxidation sensitive compounds using electron impact ionization. The analysis of volatile and oxidation sensitive compounds by mass spectrometry is not easily achieved, as all state-of-the-art mass spectrometric methods require at least one sample preparation step, e.g., dissolution and dilution of the analyte (electrospray ionization), co-crystallization of the analyte with a matrix compound (matrix-assisted laser desorption/ionization), or transfer of the prepared samples into the ionization source of the mass spectrometer, to be conducted under atmospheric conditions. Here, the use of a sample inlet system is described which enables the analysis of volatile metal organyls, silanes, and phosphanes using a sector field mass spectrometer equipped with an electron impact ionization source. All sample preparation steps and the sample introduction into the ion source of the mass spectrometer take place either under air-free conditions or under vacuum, enabling the analysis of compounds highly susceptible to oxidation. The presented technique is especially of interest for inorganic chemists, working with metal organyls, silanes, or phosphanes, which have to be handled using inert conditions, such as the Schlenk technique. The principle of operation is presented in this video.  相似文献   

16.
Mass spectrometry is currently one of the most versatile and sensitive instrumental methods applied to structural characterization of plant secondary metabolite mixtures isolated from biological material. Plant tissues contain thousands of natural products fulfilling different roles in plant physiology and biochemistry. These natural products have various biological activities in respect to plants synthesizing them, in their responses to different environmental stresses and are also active principles of food supplements and pharmaceuticals of plant origin. Flavonoids constitute a large group of phenolic secondary metabolites and are probably produced by all terrestrial plant species. More than 9000 glycoconjugates of flavonoids are presently known in the plant kingdom and more than 50 of them may be present in a single plant. For this reason methods of identification and analysis of this group of compounds are particularly demanded. Due to a high number of metabolites present in plant extracts, the isolation and purification of most compounds in amounts suitable for unambiguous characterization with NMR methods is often impossible. For these reasons elaboration of strategies for sufficiently precise structural characterization of compounds present in mixture samples is currently a primary task. Mass spectrometry, thanks to application of different physical phenomena for ionization, separation and detection of analyzed molecules, became the method of choice among analytical methods applied for identification, structural characterization and quantitative analysis of the natural products. Methods of analysis of differently substituted flavonoids (O- and C-glycosides, differentiation of various oligosaccharidic substituents, detection of acylated compounds) are presented in the paper. A proper application of mass spectrometric methods in well-defined and strictly controlled technical parameters of analysis permits obtaining important structural information. Among others, recording collision induced dissociation mass spectra allows identification of compounds after comparison of the registered MS spectra with these present in the existing databases.  相似文献   

17.
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the “omics” age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated.  相似文献   

18.
Living cells control and regulate their biological processes through the coordinated action of a large number of proteins that assemble themselves into an array of dynamic, multi-protein complexes1. To gain a mechanistic understanding of the various cellular processes, it is crucial to determine the structure of such protein complexes, and reveal how their structural organization dictates their function. Many aspects of multi-protein complexes are, however, difficult to characterize, due to their heterogeneous nature, asymmetric structure, and dynamics. Therefore, new approaches are required for the study of the tertiary levels of protein organization.One of the emerging structural biology tools for analyzing macromolecular complexes is mass spectrometry (MS)2-5. This method yields information on the complex protein composition, subunit stoichiometry, and structural topology. The power of MS derives from its high sensitivity and, as a consequence, low sample requirement, which enables examination of protein complexes expressed at endogenous levels. Another advantage is the speed of analysis, which allows monitoring of reactions in real time. Moreover, the technique can simultaneously measure the characteristics of separate populations co-existing in a mixture. Here, we describe a detailed protocol for the application of structural MS to the analysis of large protein assemblies. The procedure begins with the preparation of gold-coated capillaries for nanoflow electrospray ionization (nESI). It then continues with sample preparation, emphasizing the buffer conditions which should be compatible with nESI on the one hand, and enable to maintain complexes intact on the other. We then explain, step-by-step, how to optimize the experimental conditions for high mass measurements and acquire MS and tandem MS spectra. Finally, we chart the data processing and analyses that follow. Rather than attempting to characterize every aspect of protein assemblies, this protocol introduces basic MS procedures, enabling the performance of MS and MS/MS experiments on non-covalent complexes. Overall, our goal is to provide researchers unacquainted with the field of structural MS, with knowledge of the principal experimental tools.  相似文献   

19.
The development of a new mass spectrometric lipid profiling methodology permits the identification of cellular phosphatidylinositol monophosphate/phosphatidylinositol bisphosphate/phosphatidylinositol trisphosphate (PIP/PIP2/PIP3) species that includes the fatty acyl composition. Using electrospray ionization mass spectrometry, we were able to resolve and identify 28 PIP and PIP2 compounds as well as 8 PIP3 compounds from RAW 264.7 or primary murine macrophage cell extracts. Analysis of PIP profiles after agonist stimulation of cells revealed the generation of differential PIP3 species and permitted us to propose a novel means for regulation and specificity in signaling through PIP3. This is the first reported identification of intact, cellular PIP3 by mass spectral analysis. The ability to analyze the fatty acyl chain composition of signaling lipids initiates new venues for investigation of the processes by which specific polyphosphoinositide species mediate.  相似文献   

20.
Lipids, particularly phospholipids, are fundamental to CNS tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows detailed information to be obtained on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Furthermore, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass spectrometry and imaging mass spectrometry as they relate to studies of phospholipids in traumatic brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号