首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Farm lands of resource-poor communities in South Africa are depleted of nutrients due to continuous mono-cropping, limited use of fertilisers, and sometimes leaching caused by high rainfall. Despite the well-known advantages of biological nitrogen fixation (BNF) in cropping systems, less than 10% of the grain crops planted annually in these areas are legumes. Using a participatory research and development approach, resource-poor farmers were introduced to conservation agriculture (CA) practices, including BNF, that promoted zero (or reduced) tillage, increased retention of soil cover, as well as crop diversification. Because crop rotation and intercropping of legumes with cereals are known to contribute to soil fertility while enhancing food security, resource-poor farmers from various Provinces in South Africa were trained on the benefits of legume culture for eight years. As a result, these resource-poor farmers did not only get training in inoculation techniques, but were also supplied with inoculants for use on their farms. Data collected from Farmers Demonstration Trials at Belvedere, Dumbarton and Lusikisiki, showed that the grain and fodder yield of maize planted after legumes, and maize intercropped with legumes, were comparable to those of maize receiving high N fertilizer dose (i.e. 54 kg N at planting and 54 kg N as top-dressing). The same data further showed thatRhizobium inoculation, when combined with application of low levels of P and K, significantly increased crop yields within farmers’ trial plots. BNF therefore offers a great opportunity for resource-poor farmers in South Africa to increase their crop yields and thus improve the quality of their livelihoods through the adoption of affordable and sustainable biological technologies that enhance soil fertility.  相似文献   

2.
Improved varieties of legumes adapted to nutrient deficiency have the potential to improve food security for the poorest farmers. Tolerant varieties could be an inexpensive and biologically smart technology that improves soils while minimizing fertilizer costs. Yet other technologies that improve productivity and appear to be biologically sound have been rejected by farmers. To translate benefits to smallholder farmers, research on low-nutrient tolerant genes and crop improvement must keep farmer preferences and belief systems in the forefront. We review farmer participatory research on legume-intensification and soil fertility management options for smallholder farmers in Africa, including recent results from our work in Malawi and Kenya. We suggest that indeterminate, long-duration legumes are the best bet for producing high quality residues, compared to short-duration and determinate genotypes. This may be due to a long period of time to biologically fix nitrogen, acquire nutrients, photosynthesize and grain fill. Also, the indeterminate nature of long-duration varieties facilitates recovery from intermittent stresses such as drought or pest pressure. However, indeterminate growth habit is also associated with late maturity, moderate yield potential and high labour demand. These traits are not necessarily compatible with smallholder criteria for acceptable varieties. Malawi women farmers, for example, prioritized early maturity and low-labour requirement, as well as yield potential. To address complex farmer requirements, we suggest the purposeful combination of species with different growth habits; e.g. deep-rooted indeterminate long-duration pigeonpea interplanted with short-duration soyabean and groudnut varieties. On-farm trials in Malawi indicate that calorie production can be increased by 30% through pigeonpea-intensified systems. Farmers consistently indicate strong interest in these systems. In Kenya, a 55% yield increase was observed for a doubled-up pigeonpea system (a double row of pigeonpea intercropped with three maize rows) compared to traditional, low density intercrops. However, the need for improved pigeonpea varieties with high intercrop suitability, including reduced early branching, was highlighted by a farmer preference study in the same area. These examples illustrate the potential for participatory research methodologies to drive biophysical research in farmer-acceptable directions.  相似文献   

3.
Cakmak  Ismail 《Plant and Soil》2002,247(1):3-24
The world population is expanding rapidly and will likely be 10 billion by the year 2050. Limited availability of additional arable land and water resources, and the declining trend in crop yields globally make food security a major challenge in the 21st century. According to the projections, food production on presently used land must be doubled in the next two decades to meet food demand of the growing world population. To achieve the required massive increase in food production, large enhancements in application of fertilizers and improvements of soil fertility are indispensable approaches. Presently, in many developing countries, poor soil fertility, low levels of available mineral nutrients in soil, improper nutrient management, along with the lack of plant genotypes having high tolerance to nutrient deficiencies or toxicities are major constraints contributing to food insecurity, malnutrition (i.e., micronutrient deficiencies) and ecosystem degradation. Plant nutrition research provides invaluable information highly useful in elimination of these constraints, and thus, sustaining food security and well-being of humans without harming the environment. The fact that at least 60% of cultivated soils have growth-limiting problems with mineral-nutrient deficiencies and toxicities, and about 50% of the world population suffers from micronutrient deficiencies make plant nutrition research a major promising area in meeting the global demand for sufficient food production with enhanced nutritional value in this millennium. Integration of plant nutrition research with plant genetics and molecular biology is indispensable in developing plant genotypes with high genetic ability to adapt to nutrient deficient and toxic soil conditions and to allocate more micronutrients into edible plant products such as cereal grains.  相似文献   

4.
Seasonal climate outlooks provide one tool to help decision-makers allocate resources in anticipation of poor, fair or good seasons. The aim of the 'Climate Outlooks and Agent-Based Simulation of Adaptation in South Africa' project has been to investigate whether individuals, who adapt gradually to annual climate variability, are better equipped to respond to longer-term climate variability and change in a sustainable manner. Seasonal climate outlooks provide information on expected annual rainfall and thus can be used to adjust seasonal agricultural strategies to respond to expected climate conditions. A case study of smallholder farmers in a village in Vhembe district, Limpopo Province, South Africa has been used to examine how such climate outlooks might influence agricultural strategies and how this climate information can be improved to be more useful to farmers. Empirical field data has been collected using surveys, participatory approaches and computer-based knowledge elicitation tools to investigate the drivers of decision-making with a focus on the role of climate, market and livelihood needs. This data is used in an agent-based social simulation which incorporates household agents with varying adaptation options which result in differing impacts on crop yields and thus food security, as a result of using or ignoring the seasonal outlook. Key variables are the skill of the forecast, the social communication of the forecast and the range of available household and community-based risk coping strategies. This research provides a novel approach for exploring adaptation within the context of climate change.  相似文献   

5.
The development of integrated crop–livestock systems (ICLS) is a major challenge for the ecological modernisation of agriculture but appears difficult to implement at a large scale. A participatory method for ICLS design has been developed and implemented in 15 case studies across Europe, representing a range of production systems, challenges, constraints and resources for innovation. Local stakeholders, primarily farmers, but also cooperatives, environmental-association representatives and natural-resource managers, were involved in the identification of challenges and existing initiatives of crop-livestock integration; in the design of new options at field, farm and territory levels; and then in qualitative multicriteria assessment of these options. A conceptual framework based on a conceptual model (crops, grasslands, animals) was developed to act as a boundary object in the design step and invite innovative thinking in ‘metabolic’ and ‘ecosystemic’ approaches. A diversity of crops and grasslands interacting with animals appeared central for designing sustainable farming systems at the territory level, providing and benefitting from ecosystem services. Within this diversity, we define three types of integrated systems according to their degrees of spatial and temporal coordination: complementarity, local synergy, territorial synergy. Moreover, the options for cooperation and collective organisation between farmers and other stakeholders in territories to organise and manage this diversity of land use revealed opportunities for smart social innovation. The qualitative multicriteria assessment identified farmer workload as the main issue of concern while demonstrating expected benefits of ICLS simultaneously for economic, agronomic, environmental and social criteria. This study concludes that participatory design of ICLS based on a generic multi-level and multi-domain framework and a methodology to deal with a local context can identify new systems to be tested. Further assessment and redesign work will be performed in later stages of the European FP7 CANTOGETHER project.  相似文献   

6.
Soil and crop management strategies to prevent iron deficiency in crops   总被引:5,自引:0,他引:5  
Plants and humans cannot easily acquire iron from their nutrient sources although it is abundant in nature. Thus, iron deficiency is one of the major limiting factors affecting crop yields, food quality and human nutrition. Therefore, approaches need to be developed to increase Fe uptake by roots, transfer to edible plant portions and absorption by humans from plant food sources. Integrated strategies for soil and crop management are attractive not only for improving growing conditions for crops but also for exploiting a plant??s potential for Fe mobilization and utilization. Recent research progress in soil and crop management has provided the means to resolve complex plant Fe nutritional problems through manipulating the rhizosphere (e.g., rhizosphere fertilization and water regulation), and crop management (includes managing cropping systems and screening for Fe efficient species and varieties). Some simple and effective soil management practices, termed ??rhizosphere fertilization?? (such as root feeding and bag fertilization) have been developed and widely used by local farmers in China to improve the Fe nutrition of fruit plants. Production practices for rice cultivation are shifting from paddy-rice to aerobic rice to make more efficient use of irrigation water. This shift has brought about increases in Fe deficiency in rice, a new challenge depressing iron availability in rice and reducing Fe supplies to humans. Current crop management strategies addressing Fe deficiency include Fe foliar application, trunk injection, plant breeding for enriched Fe crop species and varieties, and selection of cropping systems. Managing cropping systems, such as intercropping strategies may have numerous advantages in terms of increasing Fe availability to plants. Studies of intercropping systems on peanut/maize, wheat/chickpea and guava/sorghum or -maize increased Fe content of crops and their seed, which suggests that a reasonable intercropping system of iron-efficient species could prevent or mitigate Fe deficiency in Fe-inefficient plants. This review provides a comprehensive comparison of the strategies that have been developed to address Fe deficiency and discusses the most recent advance in soil and crop management to improve the Fe nutrition of crops. These proofs of concept studies will serve as the basis for future Fe research and for integrated and optimized management strategies to alleviate Fe deficiency in farmers?? fields.  相似文献   

7.
The continued rise in mineral fertilizer costs has demanded cheaper alternative N sources for resource-constrained smallholder farmers, with N2-fixing legumes presenting a viable option to maintain crop productivity. A study was conducted over two years on a coarse sandy soil (Lixisol with <80 g clay kg?1 soil) to determine the productivity of (i) five grain legumes, (ii) a green manure legume, and (iii) maize on smallholder farmers’ fields, identified as SOFECSA Leaming Centres, in Chinyika, north-east Zimbabwe. The objective of the study was to promote appropriate targeting of soil fertility technologies to different farmer resource groups. Emphasis was put on establishing the scope for improving nutrient resource allocation efficiency and crop yields in relation to different management practices as dictated by resource endowment. Both biomass and grain yield results indicated a general conformity to farmer resource group as follows: Resource-endowed farmers (RG1) > Intermediate farmers (RG2) > Resource-constrained farmers (RG3). Although overall biomass productivity for the grain legumes was generally low, <2.8 Mg ha?1 across all Learning Centres, soyabean grain yields increased by between 30% (RG1) and >500% (RG3) over the two seasons. However, there was a general preference for bambara nut by RG3 farmers who cited low cash demands in terms of seed and external inputs, and pest-resistance compared with other grain legumes. Increased maize grain yields following legumes, and which exceeded 7 Mg ha?1 for RG1 under green-manure, was apparently due to an increase in soil available N. The results showed scope for enhancing the contribution of legumes to both soil fertility and household nutrition within smallholder farming systems if targeted according to farmers’ resource endowment. The challenge is availing the minimum level of external inputs to RG3 farmers to achieve significant yield benefits on poor soils. The paper presents three main scenarios constituting major challenges for integrating legumes into the current farming systems.  相似文献   

8.
Using data from a survey of deaths of children less than 5 years old conducted in 1997 in a county in Shaanxi Province, China, this paper examines gender differences in child survival in contemporary rural China. First, excess female child mortality in the county in 1994-96 is described, followed by an analysis of the mechanisms whereby the excess mortality takes place, and the underlying social, economic and cultural factors behind it. Excess female child mortality in this county is probably caused primarily by discrimination against girls in curative health care rather than in preventive health care or food and nutrition. Although discrimination occurs in all kinds of families and communities, discrimination itself is highly selective, and is primarily against girls with some specific characteristics. It is argued that the excess mortality of girls is caused fundamentally by the strong son preference in traditional Chinese culture, but exacerbated by the government-guided family planning programme and regulations. This suggests that it is crucial to raise the status of girls within the family and community so as to mitigate the pressures to discriminate against girls in China's low fertility regime. Finally, the possible policy options to improve female child survival in contemporary rural China are discussed.  相似文献   

9.
The potential for underutilized crops (also known as minor, neglected or orphan crops) to improve food and nutrition security has been gaining prominence within the research community in recent years. This is due to their significance for diversified agricultural systems which is a necessary component of future agriculture to address food and nutritional security concerns posed by changing climate and a growing world population. Developing workable value chain systems for underutilized crop species, coupled with comparative trait studies with major crops, potentially allows us to identify suitable agricultural modalities for such species. Bambara groundnut (Vigna subterranea L. Verdc.), an underutilized leguminous species, is of interest for its reported high levels of drought tolerance in particular, which contributes to environmental resilience in semi-arid environments. Here, we present a synopsis of suitable strategies for the genetic improvement of Bambara groundnut as a guide to other underutilized crop species. Underutilized crops have often been adapted over thousands of years in particular regions by farmers and largely still exist as landraces with little or no genetic knowledge of key phenotypic traits. Breeding in these species is fundamentally different to breeding in major crops, where significant pedigree structures and history allow highly directed improvement. In this regard, deploying new integrated germplasm development approaches for variety development and genetic analysis, such as multi-parent advance generation inter-crosses (MAGIC), within breeding programmes of underutilized species will be important to be able to fully utilize such crops.  相似文献   

10.
Feeding the world’s growing population is a serious challenge. Food insecurity is concentrated in developing nations, where drought and low soil fertility are primary constraints to food production. Many crops in developing countries are supported by weathered soils in which nutrient deficiencies and ion toxicities are common. Many systems have declining soil fertility due to inadequate use of fertility inputs, ongoing soil degradation, and increasingly intense resource use by burgeoning populations. Climate models predict that warmer temperatures and increases in the frequency and duration of drought during the 21st century will have net negative effects on agricultural productivity. The potential effects of climate change on soil fertility and the ability of crops to acquire and utilize soil nutrients is poorly understood, but is essential for understanding the future of global agriculture. This paper explores how rising temperature, drought and more intense precipitation events projected in climate change scenarios for the 21st century might affect soil fertility and the mineral nutrition of crops in developing countries. The effects of climate change on erosion rates, soil organic carbon losses, soil moisture, root growth and function, root-microbe associations and plant phenology as they relate to mineral nutrition are discussed. Our analysis suggests that the negative impacts of climate change on soil fertility and mineral nutrition of crops will far exceed beneficial effects, which would intensify food insecurity, particularly in developing countries.  相似文献   

11.
In marginal and complex agricultural environments, modern varieties of rice have been scantily adopted by resource-poor farmers. This is due, on the one hand, to farmers’ nonexistent or reduced access to agro-chemicals, irrigation facilities, and seeds, and on the other hand, to the fact that they did not fulfil the farmers’ socioeconomic and cultural priorities and needs. An understanding of farmers’ criteria for variety selection is key to promoting effective plant breeding and achieving broader aims of food security and food sovereignty. Based on extensive ethnographic field research, this paper discusses rice biodiversity management strategies and the experimental skills and knowledge of Southern Guinea-Bissau farmers against the backdrop of failures by development interventions to introduce modern rice varieties. I conclude that the present cereal crises and environmental concerns should reshape researchers’ exclusive priorities on genetic engineering in order to identify economically valued landraces, and promote their dissemination through participatory seed self-sufficiency approaches.  相似文献   

12.
尚光引  杨欣 《应用生态学报》2021,32(4):1373-1382
农业碳排放已经成为我国温室气体排放的第二大来源,不仅给农业减排工作带来巨大压力,还严重影响我国粮食安全和农业可持续发展。当前我国低碳农业技术并没有得到大面积推广,这与农户对低碳农业政策的认知密切相关。因此,如何促进农户采纳以绿色、可持续为目标的低碳农业技术,成为实现农业碳减排的关键。本研究基于江汉平原704户农户的调研数据,运用熵值法和Heckman样本选择模型,从农户政策了解程度、政策参与程度、政策满意程度3个维度出发,构建了基于全过程视角的农户低碳政策认知变量,实证分析农户全过程政策认知对其低碳农业技术采纳行为的影响。结果表明: 农户低碳政策认知整体水平有待提高,农户的政策认知整体水平仅为1.89;农户对单项低风险、高效益的低碳农业生产技术采纳率较高,但对多项的低碳农业技术采纳程度偏低,平均采纳程度仅为1.62;农户政策认知对其低碳农业技术采纳与否、采纳程度均有显著性的正向影响。据此提出加大低碳农业技术政策宣传力度、完善低碳农业技术培训、提高专项补贴标准等政策建议。  相似文献   

13.
Sweetpotato has been the subject of little research worldwide compared with other major crop staples, and this is especially so for less developed countries where sweetpotato is critical for food security. This review synthesises information on plant protection issues that affect smallholder sweetpotato farmers in less developed countries to identify major issues and suggest research priorities. Though the pests and diseases of sweetpotato in less developed countries are largely common to industrialised systems, their relative importance differs and losses tend to be more severe as a result of differing agronomic practices and relative unavailability of management options and technical support that are important in developed countries. Smallholders are heavily reliant on cultural practices such as traditional forms of biological control using ants and livestock, fallowing and composting (sometimes with plant materials having biocidal properties). Crop protection methods that have been developed for use in sweetpotato production in developed countries, such as pathogen‐tested planting material, early maturing varieties, pheromone trapping and pesticides are less accessible to, and relevant for, smallholders. Smallholders also typically harvest a given crop progressively which extends the period over which storage roots are potentially vulnerable to attack but reduces the risk of post‐harvest losses. Human population growth in developing countries is leading to an increase in cropping intensity with shorter fallow periods and more years of continuous crops. This has the dual effect of depleting soil nutrients and increasing the potential for pest and pathogen build‐up. Associated with this, the adoption of strategies to manage crop nutrition, such as not burning crop residues, promote carryover of pests and pathogen inocula. As a consequence of these factors, sweetpotato yield losses from diseases, especially viruses, and pests, particularly weevils, can be high. Climate change is likely to result in more frequent drought and this will increase losses caused by sweetpotato weevils that are favoured by dry conditions. This review of sweetpotato pests and their management options concludes with suggestions for some future research priorities including the combination of traditional practices that have pest management outcomes with relevant practices from industrial production that are able to be transferred or modified for use in smallholder production. Increased technical support for decision making and diagnostics, including molecular approaches that have scope for field use, will be important in reducing the burden imposed by biotic threats to this important global crop.  相似文献   

14.
Bambara groundnut is an indigenous African legume crop plant. It is largely grown by subsistence farmers, but can also be used as a cash crop to supplement family income. The fact that it is highly drought tolerant means that it has considerably potential to provide part of food security in regions of the world where water availability is a serious issue. As one part of the international effort to understand and improve this species, we report here the first 10 microsatellite markers derived from bambara groundnut.  相似文献   

15.
Earthworms as partners in rural land use Within the soil food web, earthworms are very important for the provision of numerous ecosystem services. They promote soil structure formation, soil health, nutrient availability, aeration, water storage and resilience of soils. By this means, earthworms play a substantial role to improve the fertility of agricultural soils in the long-term. Conservation and promotion of earthworms through soil-protecting management measures is therefore essential to make best use of the natural capacity of earthworms. Agricultural soil management of farmers and the beneficial activities of earthworms can be seen as synergistic interaction, which provides a promising approach for the design of sustainable cropping systems ensuring future agricultural productivity and yield.  相似文献   

16.
In fire-prone ecosystems, plants for the most part persist via either soil-stored seed banks (seeders) or below-ground storage structures (resprouters). Given their greater allocation of resources above ground to growth and reproduction, seeders are likely to have a higher nutrient requirement than resprouters. This may result in discernable differences in habitat nutrition and leaf morphology. These differences are probably accentuated in Cape legumes given their poor adaptation to low-P soils. It was hypothesized that legume seeders occupy habitats with greater fertility and possess larger, less sclerophyllous leaves than resprouters. Site nutrition and leaf morphologies were compared between seeders and resprouters in the genera Otholobium and Psoralea. There were no differences in leaf morphology between seeders and resprouters. Seeders sites had a higher total [N], exchangeable [Ca] and [Mg], and CEC, but lower [Fe] than resprouters. Only within Otholobium, did seeder sites have a higher Bray II [P]. This genus-specific variation in available P is probably a consequence of greater variation in soil type and precipitation between seeders and resprouters. Conversely, niche construction may contribute to the differences in soil fertility between seeders and resprouters in Psoralea. Thus, our data showed a general tendency for seeders to inhabit more fertile sites than resprouters. Caution is required, however, in generalizing these results, as our data indicate a difference in factors affecting soil nutrient availability between legume genera. Changes in soil fertility post-fire may limit legume persistence beyond the early stages of succession.  相似文献   

17.
Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world.  相似文献   

18.
With the increasing need to restore former agricultural lands worldwide and in the tropics, in particular, it is critical to explore different models for how to restore these lands in a cost-effective manner which best simulates natural forest recovery and provides for human livelihoods. We propose that agro-successional restoration, which we define as incorporating a range of agroecology and agroforestry techniques as a transition phase early in forest restoration, could be used more widely to overcome socioeconomic and ecological obstacles to restoring these lands. Over centuries, farmers and scientists have developed various agroforestry techniques that aim to cultivate crops and trees, in a range of crop types, time periods of cultivation (a few years to several decades), and complexity of species planted. The management practices used in these systems, such as weeding and increasing soil fertility, parallel those used in many forest restoration efforts. The synergism between these approaches is evidenced by many existing agro-successional examples currently used by smallholders in the tropics. Benefits of the agro-successional model include extending the management period of restoration, offsetting some management costs, providing food security for small landholders, and involving small landholders in the restoration process.  相似文献   

19.
R. J. Thomas 《Plant and Soil》1995,174(1-2):103-118
Forage legumes have long been lauded for their ability to fix atmospheric nitrogen and contribute to the sustainability of agricultural production systems. However despite the benefits they bring in terms of increased herbage and animal production they are not widely used in temperate or tropical regions. In this review the amounts of biological nitrogen fixation (BNF) needed to sustain the soil-plant-animal system are discussed and related to the amounts fixed in tropical pastures. The data suggest that tropical forage legumes have the capacity to meet the requirements to balance the N cycle of grazed pastures. The actual amounts required will depend on the rate of pasture utilization and the efficiency of recycling via litter, excreta and internal remobilization. The efficiency of nitrogen fixation (% of legume N derived from fixation) is usually high in tropical pastures (>80%) and is unlikely to be affected by inorganic soil N in the absence of N fertilizer. Thus an estimate of the amoutns of N fixed could be obtained from simple estimates of legume biomass provided tissue levels of other nutrients such as phosphorus and potassium are adequate. Key factors for the achievement of sustainable grass/legume pastures include the selection of appropriate germplasm adapted to the particular environment and the judicious use of fertilizers such as phosphorus, potassium, calcium, magnesium and sulphur on acid infertile soils typical of the sub-humid and humid tropics. The main constraints to the widespread adoption of forage legumes include a lack of legume persistence, the presence of anti-quality factors such as tannins, variable Bradyrhizobium requirements and lack of acceptability by farmers. Strategies for the alleviation of these constrainst are discussed. Forage legumes can be used to recuperate degraded soils via their ability to improve the physical, chemical and biological properties of soils and these benefits could be of particular use for small-scale resource-poor farmers. The incorporation of forage legumes into agropastoral systems is discussed as an environmentally and economically attractive means to encourage the widespread adoption of legumes in the humid tropics.  相似文献   

20.
Landholding fragmentation is a common feature of the agricultural systems of small farmers in the tropics. This paper presents a case study from an ejido in central Chiapas, Mexico, where this pattern is common. Farmers recognize soil types of different quality, embodied in a folk soil txonomy. They argue that fragmentation is the result of their desire to maintain an equitable distribution of all land types among them, independently of the amount of land each controls. ¯The evidence shows that while not all farmers have all soil types, farmers belonging to all ranges of socioeconomic strata control soils in all the soil classes. There is no marked concentration of any soil type by any specific group, types are distributed among farmers by their abundance. Farmers have rejected previous government proposals to consolidate their landholdings. Fragmentation is associated with a high degree of social control over the land and a participatory process present in this community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号