首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In germinating seeds of legumes, amino acids liberated during mobilization of storage proteins are partially used for synthesis of storage proteins of the developing axis, but some of them are respired. The amino acids are catabolized by both glutamate dehydrogenase (GDH) and transaminases. Ammonium is reassimilated by glutamine synthetase (GS) and, through the action of asparagine synthetase (AS), is stored in asparagine (Asn).This review presents the ways in which amino acids are converted into Asn and their regulation, mostly in germinating seeds of yellow lupine, where Asn can make up to 30% of dry matter. The energy balance of the synthesis of Asn from glutamate, the most common amino acid in lupine storage proteins, also shows an adaptation of lupine for oxidation of amino acids in early stages of germination.Regulation of the pathway of Asn synthesis is described with regard to the role of GDH and AS, as well as compartmentation of particular metabolites. The regulatory effect of sugar on major links of the pathway (mobilization of storage proteins, induction of genes and activity of GDH and AS) is discussed with respect to recent genetic and molecular studies. Moreover, the effect of glutamate and phytohormones is presented at various stages of Asn biosynthesis.  相似文献   

2.
Summary The relationship between N2-fixation, nitrate reductase and various enzymes of ammonia assimilation was studied in the nodules and leaves ofC. arietinum. In the nodules of the plants growing on atmospheric nitrogen, maximum activities of glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagine synthetase (AS) and aspartate aminotransferase (AAT) were recorded just prior to maximum activity of nitrogenase. In nitrate fed plants, the first major peak of GDH and AS coincided with that of nitrate reductase in the nodules. With the exception of AS, application of nitrate decreased the activities of all these enzymes in nodules but not in leaves. Activities of GS, GOGAT and AAT were affected to much greater extent than that of GDH. On comparing the plants grown without nitrate and those with nitrate, the ratios of the activities of GDH/GS and GDH/GOGAT in nitrate given plants, increased by 4 and 12 fold, respectively. The results presented in this paper suggest that in nodules of nitrate fed plants, assimilation of ammonia via GDH assumes much greater importance.  相似文献   

3.
Selenomonas ruminantium was found to possess two pathways for NH4+ assimilation that resulted in net glutamate synthesis. One pathway fixed NH4+ through the action of an NADPH-linked glutamate dehydrogenase (GDH). Maximal GDH activity required KCl (about 0.48 M), but a variety of monovalent salts could replace KCl. Complete substrate saturation of the enzyme by NH4+ did not occur, and apparent Km values of 6.7 and 23 mM were estimated. Also, an NADH-linked GDH activity was observed but was not stimulated by KCl. Cells grown in media containing non-growth-rate-limiting concentrations of NH4+ had the highest levels of GDH activity. The second pathway fixed NH4+ into the amide of glutamine by an ATP-dependent glutamine synthetase (GS). The GS did not display gamma-glutamyl transferase activity, and no evidence for an adenylylation/deadenylylation control mechanism was detected. GS activity was highest in cells grown under nitrogen limitation. Net glutamate synthesis from glutamine was effected by glutamate synthase activity (GOGAT). The GOGAT activity was reductant dependent, and maximal activity occurred with dithionite-reduced methyl viologen as the source of electrons, although NADPH or NADH could partially replace this artificial donor system. Flavin adenine dinucleotide, flavin mononucleotide, or ferredoxin could not replace methyl viologen. GOGAT activity was maximal in cells grown with NH4+ as sole nitrogen source and decreased in media containing Casamino Acids.  相似文献   

4.
Summary Hairy roots of Brassica napus (rape cv. Giant) were produced by cocultivating leaf and cotyledon explants with Agrobacterium rhizogenes strain A4T. The hairy roots grew prolifically on solid and in liquid media. Incorporation of ammonium sulphate or phosphinothricin (PPT) into the media reduced growth. PPT treatment reduced glutamine synthetase (GS) activity and increased the ammonia content of the hairy roots. We have found that PPT treatment also induces a loss of glutamine from the roots and this may influence root growth. To test this we grew hairy roots in a liquid medium containing 10 mM glutamine. This glutamine treatment overcame the PPT induced suppression of growth but also significantly increased GS activity, reduced ammonia accumulation and increased the levels of glutamate and asparagine.  相似文献   

5.
本文测定了浑球红假单胞菌(Rhodobacter sphaeroides)菌株601谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、谷氨酸脱氢酶(GDH)和丙氨酸脱氢酶(ADH)的活性。低氨时,GS/GOGAT活力高,GDH活力低,高氨时,GS/GOGAT活力低,GDH活力高。在以分子氮或低浓度氨为氮源的培养条件下,加入GS抑制刑MSX(L—methionine—DL—sulphoximine),细菌生长受到抑制。但是,生长在以谷氨酸为氮源的细菌则不受影响。上述结果表明,浑球红假单胞菌菌株601氨同化是通过GS/GOGAT途径和GDH途径。  相似文献   

6.
Influence of different concentrations of NO3 and NH+ on the activity of glutamine synthetase (GS), asparagine synthetase (AS), glutamate dehydrogenase (GDH), nitrate reductase (NR) and the changes of GS-mRNA in wheat roots have been studied with enzymes activity assay and Northern blot. The results showed that the higher GS activity was found in roots of wheat when NH+4-N was the sole nitrogen source than when NO3-N was the sole nitrogen source. GS-mRNA of Northern blot was simillar to GS activity. 3 mmol/L NO3- promoted the activity of AS. The change of AS was independent of the change of GS. GDH activity was not been detected, and change in regulation of NR activity was not found.  相似文献   

7.
The activities of the following enzymes were studied in connection with dinitrogen fixation in pea bacteroids: glutamine synthetase(L-glutamate: ammonia ligase (ADP-forming)(EC 6.3.1.2)(GS); glutamate dehydrogenase (NADP+)(L-glutamate: NADP+ oxidoreductase (deaminating)(EC 1.4.1.4)(GDH); glutamate synthase (L-glutamine: 2-exeglutarate aminotransferase (NADPH-oxidizing))(EC 2.6.1.53)(GOGAT). GS activity was high throughout the growth of the plant and GOGAT activity was always low. It is unlikely that GDH or the GS-GOGAT pathway can account for the incorporation of ammonia from dinitrogen fixation in the pea bacteroid,  相似文献   

8.
Cerebral activities of glutamate dehydrogenase (GDH), glutamine synthetase (GS), and branched-chain amino acid aminotransferase (BCAA-T) along with the levels of ammonia in serum and brain were determined in normal, sham-operated and partially hepatectomized rats. Mild hyperammonemia was observed in sham-operated animals, and the cerebral activities of all the enzymes studied were found to be decreased when compared with those of normal animals. In hepatectomized animals, blood and brain ammonia levels were elevated further. In these animals, GS activity returned to the normal values and that of BCCA-T was elevated, while there was a continued suppression of GDH activity. These results were discussed in relation to the utilization of BCAA (leucine, isoleucine, and valine) for the synthesis of glutamate and glutamine in brain in hyperammonemic states.  相似文献   

9.
Corynebacterium callunae (NCIB 10338) grows faster on glutamate than ammonia when used as sole nitrogen sources. The levels of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (GOGAT; EC 1.4.1.13) of C. callunae were found to be influenced by the nitrogen source. Accordingly, the levels of GS and GOGAT activities were decreased markedly under conditions of ammonia excess and increased under low nitrogen conditions. In contrast, glutamate dehydrogenase (GDH; EC 1.4.1.4) activities were not significantly affected by the type or the concentration of the nitrogen source supplied. The carbon source in the growth medium could also affect GDH, GS and GOGAT levels. Of the carbon sources tested in the presence of 2 mM or 10 mM ammonium chloride as the nitrogen source pyruvate, acetate, fumarate and malate caused a decrease in the levels of all three enzymes as compared with glucose. GDH, GS and GOGAT levels were slightly influenced by aeration. Also, the enzyme levels varied with the growth phase. Methionine sulfoximine, an analogue of glutamine, markedly inhibited both the growth of C. callunae cells and the transferase activity of GS. The apparent K m values of GDH for ammonia and glutamate were 17.2 mM and 69.1 mM, respectively. In the NADPH-dependent reaction of GOGAT, the apparent K m values were 0.1 mM for -ketoglutarate and 0.22 mM for glutamine.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase  相似文献   

10.
Summary A field experiment was conducted and studied the effect of nitrogen and phosphorus on ammonia assimilating enzymes of Azolla. Nitrogen and phosphorus at 30 and 60 kg/ha respectively were tested andAzolla pinnata was inoculated at 200 g/m2. The Azolla samples were drawn on 24th hr, 7th day and 14th day and the ammonia assimilating enzymes glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamine dehydrogenase (GDH) were estimated. Nitrogen and phosphorus have markedly suppressed the GDH activity but fertilizer nitrogen has no significant influence in inhibiting the enzyme activity of GOGAT and GS. In general phosphorus application also has stimulated the GS activity significantly during the first sampling period of 24th hour.  相似文献   

11.
利用酶活性测定和 Northern分子杂交等技术 ,研究了小麦幼苗根在不同浓度的 Na NO3 和(NH4) 2 SO4的供应下 ,其谷氨酰胺合成酶 (GS)、天冬酰胺合成酶 (AS)、谷氨酸脱氢酶 (GDH)、硝酸还原酶 (NR)以及 GS- m RNA的变化。结果表明 :NH 4 处理的小麦 ,其根部 GS活性比 NO-3 处理的高 ;高浓度处理的比低浓度处理的高 ;Northern杂交结果说明 GS- m RNA转录量与 GS活性一致 ;3mmol/ L NO-3促进了 AS的活性。AS酶活性变化与 GS酶活性变化无明显依赖关系。在实验的条件下 ,没能测出 GDH的活性 ,不同浓度的 NO-3 和 NH 4 处理对 NR活性没有明显的规律。  相似文献   

12.
The composition and levels of amino acids in four Frankia strains isolated from different actinorhizal plants, were determined. Minor differences in the amino acid profiles were noted with GLN (GLU) being the major amino acid in all four strains. Enzyme actives of ammonia metabolism, GS (glutamine synthetase), GOGAT (glutamate synthetase), and GDH (glutamate dehydrogenase), were also measured. In strains At4 and Hr18, GS and GOGAT activity levels were elevated in N2-grown cells but significant amounts of GDH activity were present in ammonia-grown cells. No GDH was detected in strain Cc01 and Mg+. The characters of heat-stable and heat-labile GSs were described. In N2-fixing cells, the ATP and amino acid content was much lower, but ammonia content was higher than in NH inf4 sup+ -grown cells.  相似文献   

13.
Although glutamine is a major carbon source for mammalian cells in culture, its chemical decomposition or cellular metabolism leads to an undesirable excess of ammonia. This limits the shelf-life of glutamine-supplemented media and may reduce the cell yield under certain conditions. We have attempted to develop a less ammoniagenic medium for the growth of BHK-21 cells by a mole-to-mole substitution of glutamine by glutamate. This results in a medium that is thermally stable but unable to support an equivalent growth yield. However, supplementation of the glutamate-based medium with asparagine (3 mM) and a minimal level of glutamine (0.5 mM) restored the original growth capacity of the cultures. Substitution of the low level of glutamine with the glutamine dipeptides, ala-gln (1 mM), or gly-gln (3 mM) resulted in an equivalent cell yield and in a thermally stable medium. The ammonia accumulation in cultures with glutamate-based medium was reduced significantly (>60%). Factors mediating growth and adaptation in medium substituted with glutamate were also investigated. The maximum growth capacity of the BHK-21 cells in glutamate-based medium (without glutamine) was achieved after a period of adaptation of 5 culture passages from growth in glutamine-based cultures. Adaptation was not influenced by increases in glutamate uptake which was constitutively high in BHK cells. Adaptation was associated with changes in the activities of enzymes involved in glutamate or glutamine metabolism. The activities of glutamine synthetase (GS) and alanine aminotransferase (ALT) increased significantly and the activity of phosphate-activated glutaminase (PAG) decreased significantly. The activity of glutamate dehydrogenase (GDH) showed no significant change after adaptation to glutamate. These changes resulted in an altered metabolic profile which included a reduced ammonia production but an increased alanine production. Alanine production is suspected of being an alternative route for removal of excess nitrogen.  相似文献   

14.
D. Cammaerts  M. Jacobs 《Planta》1985,163(4):517-526
Glutamate-dehydrogenase (GDH, EC 1.4.1.2) activity and isoenzyme patterns were investigated in Arabidopsis thaliana plantlets, and parallel studies were carried out on glutamine synthetase (GS, EC 6.3.1.2). Both NADH-GDH and NAD-GDH activities increased during plant development whereas GS activity declined. Leaves deprived of light showed a considerable enhancement of NADH-GDH activity. In roots, both GDH activities were induced by ammonia whereas in leaves nitrogen assimilation was less important. It was demonstrated that the increase in GDH activity was the result of de-novo protein synthesis. High nitrogen levels were first assimilated by NADH-GDH, while GS was actively involved in nitrogen metabolism only when the enzyme was stimulated by a supply of energy, generated by NAD-GDH or by feeding sucrose. When methionine sulfoximine, an inhibitor of GS, was added to the feeding solution, NADH-GDH activity remained unaffected in leaves whereas NAD-GDH was induced. In roots, however, there was a marked activation of GDH and no inactivation of GS. It was concluded that NADH-GDH was involved in the detoxification of high nitrogen levels while NAD-GDH was mainly responsible for the supply of energy to the cell during active assimilation. Glutamine synthetase, on the other hand was involved in the assimilation of physiological amounts of nitrogen. A study of the isoenzyme pattern of GDH indicated that a good correlation existed between the relative activity of the isoenzymes and the ratio of aminating to deaminating enzyme activities. The NADH-GDH activity corresponded to the more anodal isoenzymes while the NAD-GDH activity corresponded to the cathodal ones. The results indicate that the two genes involved in the formation of GDH control the expression of enzymes with different metabolic functions.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

15.
Ammonia has been identified as one of the most inhibitory substances for mammalian cells. We have attempted to develop a less-ammoniagenic medium for the growth of Vero cells by substitution of glutamine with glutamate. In spite of reduced ammonia formation, Vero cells cultured in glutamate-based medium (DMEM-glu) could not grow normally as in glutamine-based medium (DMEM-gln). After Vero cells adapted to DMEM-glu, alanine was consumed instead of accumulated and both asparagine and glutamine were almost undetectable, indicating the lacking for aminonitrogen. By supplementing NH4Cl, the growth was significantly improved and the cellular uptake of glutamate from medium was greatly increased. However the growth was still not restored to the level in DMEM-gln, likely due to ammonia toxicity. Asparagine was chosen to support the growth of Vero cells in DMEM-glu, formulating DMEM-glu-asn. This replacement reduced ammonia formation by 79% and increased cell yields by 34% compared with DMEM-gln. After Vero cells adapted to DMEM-glu-asn, glutamine synthetase (GS) activity was elevated by 3.8 folds compared with control in DMEM-gln. In DMEM-glu-asn Vero cell growth was arrested by the specific GS inhibitor, methionine sulphoximine. This arrest affirmed the essential role of GS in glutamine synthesis and disconfirmed the potential role of asparagine synthase (AS) in glutamine formulation (also asparagine utilization).  相似文献   

16.
In Myrica gale L. plants the assimilation of ammonia released by symbiotic Frankia was observed by 15N2 labelling and subsequent analysis of the isotopic enrichment of nodule amino acids over time by single ion monitoring gas chromatography-mass spectrometry. In detached nodules of Myrica , glutamine was the first amino acid labelled at 30 s and subsequently the amino acids glutamate, aspartate, alanine and γ-amino butyric acid (GABA) became labelled. This pattern of labelling is consistent with the incorporation of ammonium via glutamine synthetase [GS; EC 6.3.1.2]. No evidence for the ammonium assimilation via glutamate dehydrogenase [GDH; EC 1.4.1.2] was observed as glutamate became labelled only after glutamine. Using attached nodules and pulse-chase labelling, we observed synthesis of glutamine, glutamate, aspartate, alanine, GABA and asparagine, and followed the transport of fixed nitrogen in the xylem largely as glutamine and asparagine. Estimation of the cost of nitrogen fixation and asparagine synthesis in Myrica nodules suggests a minimum of one sucrose required per asparagine produced. Rapid translocation of recently fixed nitrogen was observed in Myrica gale nodules as 80% of the nitrogen fixed during a 1-h period was translocated out of the nodules within 9 h. The large pool of asparagine that is present in nodules may buffer the transport of nitrogen and thus act to regulate nitrogen fixation via a feedback mechanism.  相似文献   

17.
After the addition of ammonia to the culture medium, the concentration of glutamine in B. flavum cells increased in 20 s with a decrease in glutamate. In the subsequent 30 s, the glutamine concentration deceased again with an increase in glutamate. An enzyme system, which consisted of purified glutamine synthetase (GS) and glutamate synthase (GOGAT) with ATP- and NADPH-regenerating systems, was made up to study the functions of the GS/GOGAT pathway: concentrations of the substrates and of the enzymes were decided on according to the intracellular conditions. Changes in the concentrations of amino acids caused by the addition of ammonia to the system were very similar to those of intracellular glutamate and glutamine when ammonia was added to the bacterial culture. The time required for the complete formation of glutamate from 0.5 mM ammonia was about 4-times shorter in the GS/GOGAT system than in the system using purified glutamate dehydrogenase (GDH) and the NADPH-regenerating system. The glutamate synthase reaction in the GS/GOGAT system was inhibited by some amino acids much more markedly than in the standard assay mixture consisting of glutamine, α-ketoglutarate and NADPH. These results gave further evidence elucidating the operation of the GS/GOGAT pathway in ammonia assimilation, and suggested that a reconstructed enzyme system is useful for studying physiological mechanisms.  相似文献   

18.
In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25?% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: l-Aspartate?+?GTP?+?H2O?→?Fumarate?+?GDP?+?Pi?+?NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research.  相似文献   

19.
The activities of glutamate dehydrogenase, asparagine synthetase, and total glutamine synthetase in the organs of the white lupine (Lupinus albus L.) plants were measured during plant growth and development. In addition, the dynamics of free amino acids and amides in plant organs was followed. It was shown that the change in the nutrition type was important for controlling enzyme activities in the organs examined and, consequently, for directing the pathway of ammonium nitrogen assimilation. As long as the plants remained heterotrophic, glutamine-dependent asparagine synthetase of cotyledons and glutamine synthetase of leaves apparently played a major role in the assimilation of ammonium nitrogen. In symbiotrophic plants, root nodules became an exclusive site of asparagine synthesis, and the role of leaf glutamine synthetase increased. Unlike glutamine synthetase and asparagine synthetase, glutamate dehydrogenase activity was present in all organs examined and was less dependent on the nutrition type. This was also indicated by a weak correlation of glutamate dehydrogenase activity with the dynamics of free amino acid and amide content in these organs. It is supposed that glutamine synthetase plays a leading role in both the primary assimilation of ammonium, produced during symbiotic fixation of molecular nitrogen in root nodules, and in its secondary assimilation in cotyledons and leaves. On the other hand, secondary nitrogen assimilation in the axial organs occurs via an alternative glutamate dehydrogenase pathway.  相似文献   

20.
Summary Lemna minor has the potential to assimilate ammonia via either the glutamine or glutamate pathways. A 3-4 fold variation in the level of ferredoxindependent glutamate synthase may occur, when plants are grown on different nitrogen sources, but these changes show no simple relationship to changes in the endogenous pool of glutamate. High activities of glutamate synthase and glutamine synthetase at low ammonia availability suggests that these two enzymes function in the assimilation of low ammonia concentrations. Increasing ammonia availability leads to a reduction in level of glutamate synthase and glutamine synthetase and an increase in the level of glutamate dehydrogenase. Glutamine synthetase and glutamate dehydrogenase are subject to concurrent regulation, with glutamine rather than ammonia, exerting negative control on glutamine synthetase and positive control on glutamate dehydrogenase. The changes in the ratio of these two enzymes in response to the internal pool of glutamine could regulate the direction of the flow of ammonia into amino acids via the two alternative routes of assimilation.Abbreviations GS Glutamine synthetase - GDH Glutamate dehydrogenase - GOGAT Glutamate synthase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号