首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The legume lectins from the subtribe Diocleinae, often referred to as concanavalin A-like lectins, are a typical example of highly similar proteins that show distinct biological activities. The pH-dependent oligomerization that some of these lectins undergo and the relative position of amino acids within the carbohydrate-binding site are factors that have been reported to contribute to these differences in the activities of Diocleinae lectins. In the present work, we determined the amino acid sequence and the crystal structure of the lectin of Dioclea rostrata seeds (DRL), with the aim of investigating the structural bases of the different behavior displayed by this lectin in comparison to other Diocleinae lectins and determining the reason for the distinct pH-dependent dimer-tetramer equilibrium. In addition, we discovered a novel multimeric arrangement for this lectin.  相似文献   

3.
Perlucin isolated from abalone nacre consists of 155 amino acids including a glycosylated asparagine. The sequence of the first 130 amino acids shows a high similarity to the C-type carbohydrate-recognition domains of asialoglycoprotein receptors and other members of the group of C-type lectins but also a weaker similarity to related proteins without carbohydrate-binding activity. This C-type module is followed by a short C-terminal domain containing two almost identical sequence repeats with a length of 10 amino acids. Solid phase assays show a divalent metal ion-dependent binding of perlucin to (neo)glycoproteins containing D-galactose or D-mannose/D-glucose indicating that perlucin is a functional C-type lectin with broad carbohydrate-binding specificity. Our results also indicate that it may be difficult to predict carbohydrate-binding specificity and the occurrence of alternative binding configurations by amino-acid sequence comparisons and homology modeling.  相似文献   

4.
A variety of animal tissues contain beta-galactoside-binding lectins with molecular masses in the range 13-17 kDa. There is evidence that these lectins may constitute a new protein family although their function in vivo is not yet clear. In this work the major part of the amino acid sequence of the 13 kDa lectin from bovine heart muscle has been determined. Comparison of this sequence with the cDNA-deduced sequence published for the chick embryo skin lectin showed 58% homology. Comparison of the bovine lectin sequence with partial sequences from two cDNA clones from a human hepatoma library and partial amino acid sequences of human lung lectin showed 70, 40 and 85% homology, respectively. The sequences of these vertebrate lectins are thus clearly related, supporting earlier results of immunological cross-reactivity within this group of proteins. Computer searching of protein sequence databases did not detect significant homologies between the bovine lectin sequence and other known proteins.  相似文献   

5.
We have purified a carbohydrate-binding protein from porcine heart by affinity chromatography on asialofetuin-Sepharose and have characterized this protein with respect to its size, amino acid composition, partial amino acid sequence, and carbohydrate-binding specificity. Porcine heart lectin (PHL) has a subunit molecular mass of 14,700 and is immunologically cross-reactive with a polyclonal antibody raised against a lectin isolated from calf heart. The amino acid composition of PHL is similar to that of lectins that have been isolated from calf heart, bovine brain, and rat lung. Moreover, the primary sequences of four tryptic fragments (52 amino acids total) derived from PHL are closely related to sequences previously determined for 10 other vertebrate-derived lectins. The ability of PHL to agglutinate rabbit erythrocytes was inhibited only by oligosaccharides containing terminal beta-galactosyl residues. These data indicate that PHL is a vertebrate "S-type" lectin and provide further evidence that the structures and carbohydrate-binding specificities of these lectins are highly conserved across diverse vertebrate genera.  相似文献   

6.
Properdin, which stabilizes the C3 convertase during the activation of the alternate complement pathway, contains amino acid sequence homologies with several proteins that bind sulfated glycoconjugates, including the adhesive protein thrombospondin and the leech salivary protein antistasin. This homology is based around the sequence Cys-Ser-Val-Thr-Cys-Gly-X-Gly-X-X-X-Arg-X-Arg. To determine if these homologous amino acid sequences are sulfated glycoconjugate-binding domains, purified native properdin, as well as activated properdin (a high molecular weight form of properdin), were examined for binding to various lipids in solid phase radioimmunoassays. Of the lipids tested, both native and activated properdin bind with high affinity only to sulfatide [Gal(3-SO4)beta 1-1 Cer], but not to comparable levels of cholesterol-3-SO4, or several neutral glycolipids, gangliosides, and phospholipids. Sulfatide binding by both forms of properdin is inhibited by dextran sulfate (Mr = 500,000) or fucoidan, whereas only the activated form is inhibited by dextran sulfate (Mr = 5,000) or heparin. Comparable levels of chondroitin sulfates A, B, and C, keratan sulfate, dextran (Mr = 90,000), or hyaluronic acid do not inhibit binding. Taken together, these data suggest that properdin, like antistasin and thrombospondin, binds sulfated glycoconjugates and supports the conclusion that the homologous sequences are sulfated glycoconjugate-binding domains.  相似文献   

7.
Ficolins are animal lectins with collagen-like and fibrinogen-like domains. They are involved in the first line of host defense against pathogens. Human ficolin/P35 as well as mannose-binding lectin (MBL) activates the complement lectin pathway in association with MBL-associated serine proteases. To elucidate the origin and evolution of ficolins, we separated approximately 40 kDa (p40) and approximately 50 kDa (p50) N-acetylglucosamine-binding lectins from hemolymph plasma of the solitary ascidian. Binding assays revealed that p40 recognizes N-acetyl groups in association with a pyranose ring and that p50 recognizes N-acetylglucosamine alone. Based on the amino acid sequences of the proteins, we isolated two clones each of p40 and p50 from the ascidian hepatopancreas cDNA and determined the entire coding sequences of these clones. Because all of the clones contained both collagen-like and fibrinogen-like domains, we concluded that these were homologs of the mammalian ficolin family and designated ascidian ficolins (AsFCNs). The fibrinogen-like domain of the AsFCNs shows 45.4-52.4% amino acid sequence identity with the mammalian ficolin family. A phylogenetic tree of the fibrinogen-like sequences shows that all the fibrinogen-like domains may have evolved from a common ancestor that branched off an authentic fibrinogen. These results suggest that AsFCNs play an important role with respect to ascidian hemolymph lectin activity and the correlation of different functions with binding specificity.  相似文献   

8.
The amino acid sequences of various single- and two-chain lectins from the Leguminosae exhibit striking homologies which indicates that these proteins have been conserved during evolution. Their predicted secondary structures appear to be very similar to that of Con A and, in addition, amino acids involved in the three major functional features of the Con A protomer (hydrophobic cavity, bivalent cation binding sites and carbohydrate binding site) are well conserved in other single- and two-chain lectins. It is assumed that Vicieae and Leguminosae lectins are, like Con A, three-domain proteins whose amino acid sequences have been slightly modified during evolution, thus appearing as good phylogenetic markers of speciation.  相似文献   

9.
A Xenopus laevis egg cortical granule, calcium-dependent, galactosyl-specific lectin participates in forming the fertilization layer of the egg envelope and functions in establishing a block to polyspermy. We report the cDNA cloning of the lectin, expression of the cortical granule lectin gene during oogenesis and early development, and identification of a new family of lectins. The translated cDNA for the cortical granule lectin had a signal peptide, a structural sequence of 298 amino acids, a molecular weight of 32.7 K, contained consensus sequence sites for N-glycosylation and a fibrinogen domain. The lectin cDNA was expressed during early stages of oogenesis. Lectin glycoprotein levels were constant during development with 2/3 of the lectin associated with the extracellular perivitelline space and the egg/embryo fertilization envelope. Lectin mRNA levels were from 100- to 1000-fold greater in ovary than in other adult tissues. The lectin had no sequence homology to the previously identified lectin families. The lectin had 41-88% amino acid identity with nine translated cDNA sequences from an ascidian, lamprey, frog, mouse, and human. Based on the conserved carbohydrate binding and structural properties of these glycoproteins, we propose a new family of lectins, the eglectin family.  相似文献   

10.
The nucleotide sequences of 280-360-bp domains of lectin genes from 20 legume species belonging to 17 genera have been determined. A computer analysis of the sequences has been performed with the LASERGENE package. Based on this analysis, we constructed the phylogenetic tree of the lectins, which reflects their phylogenetic and evolutionary relationships, and predicted the amino-acid sequences of the corresponding protein domains. Features of the structure of the hydrocarbon-binding lectin domains were elucidated in some species of legume genera from the temperate climatic zone. The domains were highly variable and contained the consensus sequence AspTrePheXxxAsxXxxXxxTrpAspProXxxXxxIns/DelArgHis bearing the bulk of amino acid replacements, insertions, and deletions. An association between legume groups (including species from different genera and tribes) symbiotic with the same rhizobium species and the similarity between the hydrocarbon-binding domains of lectins from these plants was found.  相似文献   

11.
Two novel lectins were isolated from roots and leaves of garlic. Characterization of the purified proteins indicated that the leaf lectin ASAL is a dimer of two identical subunits of 12 kDa, which closely resembles the leaf lectins from onion, leek and shallot with respect to its molecular structure and agglutination activity. In contrast, the root lectin ASARI, which is a dimer of subunits of 15 kDa, strongly differs from the leaf lectin with respect to its agglutination activity. cDNA cloning of the leaf and root lectins revealed that the deduced amino acid sequences of ASAL and ASARI are virtually identical. Since both lectins have identical N-terminal sequences the larger Mr of the ASARI subunits implies that the root lectin has an extra sequence at its C-terminus. These results not only demonstrate that virtually identical precursor polypeptides are differently processed at their C-terminus in roots and leaves but also indicate that differential processing yields mature lectins with strongly different biological activities. Further screening of the cDNA library for garlic roots also yielded a cDNA clone encoding a protein composed of two tandemly arrayed lectin domains. Since the presumed two-domain root lectin has not been isolated yet, its possible relationship to the previously described two-domain bulb lectin could not be studied at the protein level.  相似文献   

12.
A lectin was purified from rhizomes of the fern Phlebodium aureum by affinity chromatography on mannose-Sepharose. The lectin, designated P. aureum lectin (PAL), is composed of two identical subunits of approximately 15 kDa associated by noncovalent bonds. From a cDNA library and synthetic oligonucleotide probes based on a partial amino acid sequence, 5'- and 3'-rapid amplification of cDNA ends allowed the generation of two similar full-length cDNAs, termed PALa and PALb, each of which had an open reading frame of 438 bp encoding 146 amino acid residues. The two proteins share 88% sequence identity and showed structural similarity to jacalin-related lectins. PALa contained peptide sequences exactly matching those found in the isolated lectin. PALa and PALb were expressed in Escherichia coli using pET-22b(+) vector and purified by one-step affinity chromatography. Native and recombinant forms of PAL agglutinated rabbit erythrocytes and precipitated with yeast mannan, dextran, and the high mannose-containing glycoprotein invertase. The detailed carbohydrate-binding properties of the native and recombinant lectins were elucidated by agglutination inhibition assay, and native lectin was also studied by isothermal titration calorimetry. Based on the results of these assays, we conclude that this primitive vascular plant, like many higher plants, contains significant quantities of a mannose/glucose-binding protein in its storage tissue, whose binding specificity differs in detail from either legume mannose/glucose-binding lectins or monocot mannose-specific lectins. The identification of a jacalin-related lectin in a true fern reveals for the first time the widespread distribution and molecular evolution of this lectin family in the plant kingdom.  相似文献   

13.
A sequence-based prediction method was employed to identify three ligand-binding domains in transferrin-binding protein B (TbpB) of Neisseria meningitidis strain B16B6. Site-directed mutagenesis of residues located in these domains has led to the identification of two domains, amino acids 53 to 57 and 240 to 245, which are involved in binding to human transferrin (htf). These two domains are conserved in an alignment of different TbpB sequences from N. meningitidis and Neisseria gonorrhoeae, indicating a general functional role of the domains. Western blot analysis and BIAcore and isothermal titration calorimetry experiments demonstrated that site-directed mutations in both binding domains led to a decrease or abolition of htf binding. Analysis of mutated proteins by circular dichroism did not provide any evidence for structural alterations due to the amino acid replacements. The TbpB mutant R243N was devoid of any htf-binding activity, and antibodies elicited by the mutant showed strong bactericidal activity against the homologous strain, as well as against several heterologous tbpB isotype I strains.  相似文献   

14.
The complete nucleotide sequence of a cDNA clone for carbohydrate binding protein 35, a galactose-specific lectin identified in the nucleus of mouse 3T3 fibroblasts, has been determined. The deduced amino acid sequence suggests that the protein consists of two domains: (a) an amino-terminal portion that is homologous to certain regions of proteins of the heterogeneous nuclear ribonucleoprotein complex, and (b) a carboxyl-terminal portion that is homologous to beta-D-galactoside-specific lectins isolated from a number of animal tissues. This two-domain motif is reminiscent of several DNA- and RNA-binding proteins.  相似文献   

15.
The nucleotide sequences of 280–360-bp domains of lectin genes from 20 legume species belonging to 17 genera have been determined. A computer analysis of the sequences has been performed with the LASERGENE package. Based on this analysis, we constructed the phylogenetic tree of the lectins, which reflects their phylogenetic and evolutionary relationships, and predicted the amino-acid sequences of the corresponding protein domains. Features of the structure of the hydrocarbon-binding lectin domains were elucidated in some species of legume genera from the temperate climatic zone. The domains were highly variable and contained the consensus sequence AspTrePheXxxAsxXxxXxxTrpAspProXxxXxxIns/DelArgHis bearing the bulk of amino acid replacements, insertions, and deletions. An association between legume groups (including species from different genera and tribes) symbiotic with the same rhizobium species and the similarity between the hydrocarbon-binding domains of lectins from these plants was found.  相似文献   

16.
The Xenopus laevis oocyte cortical granule lectin (XL35) has been studied in fertilization and embryonic development. Several nucleic acid sequences that predict proteins homologous to XL35 have since been reported in frog, human, mouse, lamprey, trout, ascidian worm. These proteins also showed high degrees of amino acid sequence homology to a common fibrinogen-like motif that may involve carbohydrate binding. Although their biological functions and carbohydrate binding specificities have not been studied in detail, this new family of lectins has common characteristics. Several independent studies on this new family of lectins strongly suggest that the lectins are expressed and stored in specialized vesicles that may be released upon the infection by pathogens. In addition, some family members have been shown to bind to oligosaccharides from bacterial pathogens. Therefore, this family of lectins likely participates in pathogen surveillance as part of the innate immune system. We propose the name X-lectin family for these homologs of XL35. Published in 2004.  相似文献   

17.
A galactose-binding lectin from the venom of the snake Trimeresurus stejnegeri consists of isolated carbohydrate recognition domains, belonging to group VII of the C-type animal lectins. As a first step toward determining the tertiary structure of the galactose-specific lectin, we produced the lectin in Escherichia coli. By in vitro refolding and affinity chromatography, modest amounts (8 mg/liter) of active recombinant proteins were obtained. The recombinant protein was homogeneous, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry. Its amino acid sequence without the initiated methionine at the N-terminus was also characterized by mass spectrometry. The data of hemagglutination and enzyme-linked lectin binding assays demonstrated that the recombinant lectin showed similar sugar-binding activity as the native protein. In addition, fluorescence spectroscopy and circular dichroism also showed obviously their structural similarity.  相似文献   

18.
Our previous studies on the fruit body lectin of Pleurotus cornucopiae revealed the existence of three isolectins, composed of two homodimers and one heterodimer of 16- and 15-kDa subunits. In this study, two genes encoding the lectins were cloned and characterized. Both genes encoded 144 amino acids and only 5 amino acids were different within the coding region, but the nucleotide sequences of the 5'-upstream and 3'-downstream regions differed extensively. Southern hybridization with gene-specific probes showed that one gene encoded the 16-kDa and the other encoded the 15-kDa subunit. Functional lectins were synthesized in Escherichia coli under the direction of these genes. On SDS-PAGE, the recombinant lectins showed the same banding patterns as the native lectins. In amino acid sequence, these lectins showed extensive similarity with the lectin from a nematode-trapping ascomycete fungus, Arthrobotrys oligospora, suggesting that the lectins might also function in capturing nematodes.  相似文献   

19.
20.
A novel lectin was isolated from leaves of the Japanese cycad, Cycas revoluta Thunb. (gymnosperm), and its characteristics including amino acid composition, molecular mass, carbohydrate binding specificity and partial amino acid sequences were examined. The inhibition analysis of hemagglutinating activity with various sugars showed that the lectin has a carbohydrate-binding specificity similar to those of mannose recognizing, jacalin-related lectins. Partial amino acid sequences of the lysylendopeptic peptides shows that the lectin might have a repeating structure and belong to the jacalin-related lectin family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号