首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Golden‐headed lion tamarins (GHLTs; Leontopithecus chrysomelas) are endangered primates endemic to the Brazilian Atlantic Forest, where loss of forest and its connectivity threaten species survival. Understanding the role of habitat availability and configuration on population declines is critical for guiding proactive conservation for this, and other, endangered species. We conducted population viability analysis to assess vulnerability of ten GHLT metapopulations to habitat loss and small population size. Seven metapopulations had a low risk of extirpation (or local extinction) over the next 100 years assuming no further forest loss, and even small populations could persist with immediate protection. Three metapopulations had a moderate/high risk of extirpation, suggesting extinction debt may be evident in parts of the species’ range. When deforestation was assumed to continue at current rates, extirpation risk significantly increased while abundance and genetic diversity decreased for all metapopulations. Extirpation risk was significantly negatively correlated with the size of the largest patch available to metapopulations, underscoring the importance of large habitat patches for species persistence. Finally, we conducted sensitivity analysis using logistic regression, and our results showed that local extinction risk was sensitive to percentage of females breeding, adult female mortality, and dispersal rate and survival; conservation or research programs that target these aspects of the species’ biology/ecology could have a disproportionately important impact on species survival. We stress that efforts to protect populations and tracts of habitat of sufficient size throughout the species’ distribution will be important in the near‐term to protect the species from continuing decline and extinction.  相似文献   

2.
Understanding the risk of local extinction of a species is vital in conservation biology, especially now when anthropogenic disturbances and global warming are severely changing natural habitats. Local extinction risk depends on species traits, such as its geographical range size, fresh body mass, dispersal ability, length of flying period, life history variation, and how specialized it is regarding its breeding habitat. We used a phylogenetic approach because closely related species are not independent observations in the statistical tests. Our field data contained the local extinction risk of 31 odonate (dragonflies and damselflies) species from Central Finland. Species relatedness (i.e., phylogenetic signal) did not affect local extinction risk, length of flying period, nor the geographical range size of a species. However, we found that closely related species were similar in hind wing length, length of larval period, and habitat of larvae. Both phylogenetically corrected (PGLS) and uncorrected (GLM) analysis indicated that the geographical range size of species was negatively related to local extinction risk. Contrary to expectations, habitat specialist species did not have higher local extinction rates than habitat generalist species nor was it affected by the relatedness of species. As predicted, species’ long larval period increased, and long wings decreased the local extinction risk when evolutionary relatedness was controlled. Our results suggest that a relatively narrow geographical range size is an accurate estimate for a local extinction risk of an odonate species, but the species with long life history and large habitat niche width of adults increased local extinction risk. Because the results were so similar between PGLS and GLM methods, it seems that using a phylogenetic approach does not improve predicting local extinctions.  相似文献   

3.
1  Distribution data were assembled for non-volant small mammals along elevational gradients on mountain ranges in the western U.S.A. Elevational distributions in the species-rich Uinta Mountains were compared to those on smaller mountain ranges with varying degrees of historical isolation from the Uintas.
2  For mountain ranges supporting the richest faunas, species richness is highest over a broad low- to mid-elevation zone and declines at both lower and higher elevations. Patterns on other mountain ranges are similar but reflect lower overall species richness.
3  A basic relationship between elevational and geographical distribution is apparent in the occurrence patterns of mammals on regional mountains. Faunas on mountains that have had low levels of historical isolation appear to be influenced by immigration rather than extinction. Species restricted to high elevations in the Uintas are poorly represented on historically isolated mountains and form a portion of local faunas shaped by extinction. Species occurring at lower elevations in the Uintas have better representation on isolated mountains and apparently maintain populations through immigration.
4  Several widespread species show substantial variation in maximum elevation records on different mountain ranges. This involves (1) an upward shift in habitat zones on small, isolated mountain ranges, allowing greater access by low-elevation species, and (2) expansion of certain low- and mid-elevation species into habitats normally occupied by absent high-elevation taxa.
5  Results indicate that montane mammal faunas of the intermountain region have been shaped by broad-scale historical processes, unique regional geography and local ecological dynamics. Parallel examples among mammals of the Philippine Islands suggest that such patterns may characterize many insular faunas.  相似文献   

4.
Tomas Roslin 《Ecography》2001,24(5):511-524
Recent modelling work shows that the composition of local communities can be influenced by the configuration of the surrounding landscape, but many of these models assume that all community members display the same type of extinction‐colonization dynamics. I use Aphodius dung beetles to test the hypothesis that interspecific differences in habitat selection and dispersal capacity may translate into differences in spatial population dynamics, even among closely related species coexisting on the same resource. If this is true, then groups of species with different characteristics would show different responses to landscape configuration. I first divided the area of Finland into a grid, and used collection records to describe regional variation in the Aphodius fauna of open cattle pastures. I then sampled dung beetles on 131 cattle farms, to examine whether the subset of species found on each farm was related to the density of pastures in the surrounding grid square. Finally, I used historical records to analyze changes in dung beetle communities during the last century, when there was great loss of pasture. Overall, I found no relationship between landscape characteristics and the total proportion of the regional species pool that was found on each farm. However, the distribution of species among guilds with different habitat specificity did relate to the configuration of the landscape, and the pattern was most pronounced in a specialists species with limited dispersal. Associations between community structure and landscape configuration were superimposed on two much larger and stronger patterns: a large‐scale latitudinal gradient in regional species richness, and a decelerating gain of species to local communities with an increasing regional species pool. I conclude that ecological variation among community members is a crucial factor in the analysis of local community composition, and that local species richness should always be conditioned on regional richness.  相似文献   

5.
Population trends represent a minimum amount of information required to assess the conservation status of a species. However, understanding and detecting trends can be complicated by variation among habitats and regions, and by dispersal connecting habitats through source‐sink dynamics. We analyzed trends in breeding populations between habitats and regions to better understand the overall dynamics of a species' decline. Specifically, we analyzed historical trends in breeding populations of tricolored blackbirds (Agelaius tricolor) using breeding records from 1907 to 2009. The species breeds itinerantly and ephemerally uses multiple habitat types and breeding areas, which make interpretation of trends complex. We found overall abundance declines of 63% between 1935 and 1975. Since 1980 overall declines became nonsignificant and obscure despite large amounts of data from 1980 to 2009. Temporal trends differed between breeding habitat types and were associated with regional differences in population declines. A new habitat, triticale crops (a wheat‐rye hybrid grain) produced colonies 40× larger, on average, than other breeding habitats, and contributed to a change in regional distribution since it primarily occurred in a single region. The mechanism for such an effect is not clear, but could represent the local availability of foodstuffs in the landscape rather than something specific to triticale crops. While variation in trends among habitats clearly occurred, they could not easily be ascribed to source‐sink dynamics, ecological traps, habitat selection or other detailed ecological mechanisms. Nonetheless, such exchanges provide valuable information to guide management of dynamic systems.  相似文献   

6.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

7.
8.
Summary The results of seven breeding bird censuses on an upland site in Connecticut from 1953 to 1976 are analyzed and related to changes in vegetation and surrounding urbanization during the same period. Turnover of breeding bird species on the old-field portion of the site was due to vegetational changes that caused the extinction of species preferring open shrub habitats and the colonization of species preferring forest. Turnover of breeding birds on the forest portion was due to its increasing isolation from similar forest habitat, resulting in the local extinction of forest interior species and the colonization of species characteristic of suburban habitats. The study site is too small for the preservation of forest interior bird species. It must be coordinated with larger preserves in a regional context if it is to be useful in preventing the regional extinction of forest interior bird species.  相似文献   

9.
The role of local habitat geometry (habitat area and isolation) in predicting species distribution has become an increasingly more important issue, because habitat loss and fragmentation cause species range contraction and extinction. However, it has also become clear that other factors, in particular regional factors (environmental stochasticity and regional population dynamics), should be taken into account when predicting colonisation and extinction. In a live trapping study of a mainland-island metapopulation of the root vole (Microtus oeconomus) we found extensive occupancy dynamics across 15 riparian islands, but yet an overall balance between colonisation and extinction over 4 years. The 54 live trapping surveys conducted over 13 seasons revealed imperfect detection and proxies of population density had to be included in robust design, multi-season occupancy models to achieve unbiased rate estimates. Island colonisation probability was parsimoniously predicted by the multi-annual density fluctuations of the regional mainland population and local island habitat quality, while extinction probability was predicted by island population density and the level of the recent flooding events (the latter being the main regionalized disturbance regime in the study system). Island size and isolation had no additional predictive power and thus such local geometric habitat characteristics may be overrated as predictors of vole habitat occupancy relative to measures of local habitat quality. Our results suggest also that dynamic features of the larger region and/or the metapopulation as a whole, owing to spatially correlated environmental stochasticity and/or biotic interactions, may rule the colonisation – extinction dynamics of boreal vole metapopulations. Due to high capacities for dispersal and habitat tracking voles originating from large source populations can rapidly colonise remote and small high quality habitat patches and re-establish populations that have gone extinct due to demographic (small population size) and environmental stochasticity (e.g. extreme climate events).  相似文献   

10.
The nuthatch, Sitta europaea L., is a small (23 g), cavity-nesting woodland bird which, since the 1970s, has been expanding its range in Britain. However, within this range, the species is notably scarce in an area of eastern England. This gap in the species distribution could arise for several reasons including habitat quality, local landscape structure, regional landscape structure and climate. Field surveys and logistic models of breeding nuthatch presence/absence were used to investigate the relative influences of habitat quality, landscape structure and climate on the prevalence of nuthatches in eastern England. Field surveys of woods in the study area indicated that habitat quality was sufficient to support a nuthatch population. A model of habitat occupancy in relation to local landscape structure, developed in the Netherlands, was applied to the study area. The number of breeding pairs predicted for the study area by the model was lower than expected from habitat area alone, suggesting an additional effect of isolation. However, observed numbers were even lower than those predicted by the model. To evaluate the possible roles of climate and large-scale landscape structure on distribution, presence/absence data of breeding nuthatches at the 10-km grid square scale were related to variables describing climate and the amount and dispersion of broadleaved woodland. While climate in the study area appeared suitable, models including landscape variables suggested that the study area as a whole was unlikely to support nuthatches. Although suitable habitat was available, woodland in the study area appeared to be too isolated from surrounding nuthatch populations for colonisation to be successful. This situation may change if current increases in both national and regional populations continue, thus increasing the number of potential colonists reaching the study area. Received: 3 November 1997 / 22 January 1998  相似文献   

11.
The creation of cities, towns and farms following European settlement of Australia has fragmented the original vegetation. Many native species that were previously widespread are now found only within isolated remnants of their original habitat. These relictual populations are at increased risk of decline and local extinction, so identifying the factors that determine their persistence is important for ongoing management and conservation. I compared the effects of site area, connectivity, vegetation condition and habitat resources on the presence, abundance and total number of species of butterflies and day-flying moths within 46 urban fragments of remnant vegetation in south-west Western Australia. Site area and vegetation condition were the dominant determinants of species presence: large sites with more undisturbed vegetation favoured 16 of 20 native species and only one (Geitoneura minyas) benefited from disturbance. Another nine species that were not sufficiently widespread or abundant to enable individual analysis were collectively more prevalent in larger sites. Resource quality and quantity dominated the patterns of site occupancy, consistent with habitat resources, not metapopulation effects, determining current distribution patterns. The total number of species at each site reflected the collective responses of the individual species: increasing with area and declining with vegetation disturbance. The effects of area and vegetation condition were not simply additive: disturbance had a far greater impact on small remnants. Restoration or maintenance of high vegetation condition will be essential to maintain regional species diversity and to prevent local extinctions of butterflies and day-flying moths, especially in small remnants.  相似文献   

12.
Aim Species loss has increased significantly over the last 1000 years and is ultimately attributed to the direct and indirect consequences of increased human population growth across the planet. A growing number of species are becoming endangered and require human intervention to prevent their local extirpation or complete extinction. Management strategies aimed at mitigating a species loss can benefit greatly from empirical approaches that indicate the rate of decline of a species providing objective information on the need for immediate conservation actions, e.g. captive breeding; however, this is rarely employed. The current study used a novel method to examine the distributional trends of a model endangered species, the freshwater pearl mussel, Margaritifera margaritifera (L.). Location United Kingdom and Republic of Ireland. Methods Using species presence data within 10‐km grid squares since records began three‐parameter logistic regression curves were fitted to extrapolate an estimated date of regional extinction. Results This study has shown that freshwater pearl mussel distribution has contracted since known historical records and outlier populations were lost first. Within the United Kingdom and Republic of Ireland, distribution loss has been greatest in Scotland, Northern Ireland, Wales and England, respectively, with the Republic of Ireland containing the highest relative proportion of M. margaritifera distribution, in 1998. Main conclusions This study provides empirical evidence that this species could become extinct throughout countries within the United Kingdom within 170 years under the current trends and emphasizes that regionally specific management strategies need to be implemented to prevent extirpation of this species.  相似文献   

13.
Habitat loss, resource specialization, and extinction on coral reefs   总被引:6,自引:0,他引:6  
Coral reefs worldwide are being degraded because of global warming (coral bleaching) and coastal development (sedimentation and eutrophication). Predicting the risk of species extinctions from this type of habitat degradation is one of the most challenging and urgent tasks facing ecologists. Habitat specialists are thought to be more prone to extinction than generalists; however, specialists may be more susceptible to extinction because (1) they are specialists per se, (2) they are less abundant than generalists, or (3) both. Here, I show that declines in coral abundance lead to corresponding declines in the abundance of coral‐dwelling fishes, but with proportionally greater losses to specialists than generalists. In addition, specialists have smaller initial population sizes than generalists. Consequently, specialists face a dual risk of extinction because their already small populations decline more rapidly than those of generalists. Corresponding with this increased extinction risk, I describe the local extinction of one specialist species and the near‐global extinction of another species. I conclude that habitat specialists will be the first species lost from coral reefs because their small populations suffer the most from human‐induced disturbances.  相似文献   

14.
Anthropogenic factors constitute the primary deterministic causes of species declines, endangerment and extinction: land development, overexploitation, species translocations and introductions, and pollution. The primary anthropogenic factors produce ecological and genetic effects contributing to extinction risk. Ecological factors include environmental stochasticity, random catastrophes, and metapopulation dynamics (local extinction and colonization) that are intensified by habitat destruction and fragmentation. Genetic factors include hybridization with nonadapted gene pools, and selective breeding and harvesting. In small populations stochastic factors are especially important, including the ecological factors of Allee effect, edge effects, and demographic stochasticity, and the genetic factors of inbreeding depression, loss of genetic variability, and fixation of new deleterious mutations. All factors affecting extinction risk are expressed, and can be evaluated, through their operation on population dynamics.  相似文献   

15.
Aim Habitat loss and degradation pose a major threat to biodiversity, which can result in the extinction of habitat characteristic species. However, many species exhibit a delayed response to environmental changes because of the slow intrinsic dynamics of populations, resulting in extinction debt. We assess directly the changes in habitat characteristic species composition by comparing historical (1923) and current inventories in highly fragmented grasslands. We aim to characterize the species that constitute extinction debt in European calcareous grasslands. Location Europe, Estonia, 59–60° N, 24–25° E. Methods We related eleven life‐history traits and selected habitat preferences to local extinctions of populations in grasslands where extinction debt has been largely paid. Traits were chosen to describe species dispersal and persistence abilities and were quantified from databases. Results The studied grasslands have lost 90% of their area and 30% of their characteristic plant populations in 90 years. Species more prone to local population extinction were characterized by shorter life span, self‐pollination, a lack of clonal growth, fewer seeds per shoot, lower average height, lower soil nitrogen preference and higher requirements for light, indicating a limited ability to tolerate the range of changes in biotic and abiotic conditions of the sites. Locally extinct populations were also characterized by wind‐dispersed seeds, lower seed weight and lower terminal velocity of seeds, suggesting that species strategies for long‐distance dispersal are not favoured in highly fragmented landscapes. Thus, both increased habitat isolation and decreased habitat quality are important in determining local population extinction. Main conclusions Populations more prone to local extinction were characterized by a number of life‐history traits, demonstrating a greater extinction risk for species with poorer abilities for local persistence and competition. Our results can be applied to less degraded grasslands where the extinction debt is not yet paid to determine those species most susceptible to future extinction.  相似文献   

16.
Svein Dale 《Oikos》2001,92(2):344-356
Small and isolated populations are usually assumed to be at a high risk of extinction due to environmental or demographic stochasticity, genetic problems, or too little immigration. In birds, natal dispersal is usually female-biased, but the consequences of such a pattern on vulnerability to extinction of isolated populations has not received much attention before. In this paper I derive predictions as to how female-biased natal dispersal may differentially affect the extinction risk of populations and species with contrasting distributions, migratory behaviours, life histories and mating systems. Female-biased dispersal will lead to male-biased sex ratios in small, isolated or fragmented populations, in particular because recent research has shown that females often have a limited ability to search for mates and may therefore effectively be lost from the breeding population if they disperse into areas empty of conspecifics. I reviewed published studies on birds and found that a high proportion of unpaired males is common in isolated populations or populations in small habitat fragments. Dispersal of females may therefore increase the vulnerability to extinction of small or isolated populations, or populations at the periphery of a species' distribution range. I also predict that vulnerability to extinction should be greater for migratory than for resident species and greater for short-lived than for long-lived species because of differences in the time available for females to locate unpaired males. Further, extinction risk may also be greater for birds than for mammals due to differences in which sex disperses and patterns of parental care. Finally, mating system will also affect vulnerability to extinction when natal dispersal leads to biased sex ratios. I review available evidence for these predictions (e.g. songbird declines in North America) and discuss implications for conservation.  相似文献   

17.
The identification of environmental factors linked to increased risk of local extinction often relies on inference from patterns of distribution. Yet for declining populations, the assumption of population equilibrium that underlies species distribution models is violated. Measures such as individual condition can provide a more direct indication of extinction risk, and can start to be detected before declines commence. We compared distribution-based and condition-based approaches to identifying factors affecting habitat suitability for an area-sensitive passerine, the eastern yellow robin Eopsaltria australis, in eastern Australia. We compared patterns of individual condition between robins and several common, more mobile species (Meliphagid honeyeaters and yellow thornbills Acanthiza nana). Robin presence was not affected by landscape context, but robins avoided sites with a more grassy ground layer. However, robins inhabiting landscapes with less remnant woodland had higher ratios of heterophils to lymphocytes in peripheral blood, indicating higher long-term stress. No clear spatial patterns of condition were detected for the more mobile species. Our findings suggest a hierarchical model of habitat suitability, whereby robins avoid grassy sites, but where they do occur are in poorest condition when inhabiting less-vegetated landscapes. We predict greater rates of local extinction of robins from such landscapes. The use of indicators of individual condition, in addition to distribution data, can unveil otherwise cryptic factors as important influences on habitat quality. As habitat occupancy does not always reflect habitat quality, exploring patterns in condition indices can complement species distribution modelling, potentially revealing threats to persistence before population declines have commenced.  相似文献   

18.
Habitat subdivision causes changes in food web structure   总被引:1,自引:1,他引:0  
Theory suggests that the response of communities to habitat subdivision depends on both species' characteristics and the extent to which species interact. For species with dynamics that are independent of other species, subdivision is expected to promote regional extinction as populations become small and isolated. By contrast, intermediate levels of subdivision can facilitate persistence of strongly interacting species. Consistent with this prediction, experimental subdivision lengthened persistence of some species, altering the extent of food web collapse through extinction. Extended persistence was associated with immigration rescuing a basal prey species from local extinction. As predicted by food web theory, habitat subdivision reduced population density of a top predator. Removal of this top predator from undivided microcosms increased the abundance of two other predator species, and these changes paralleled those produced by habitat subdivision. These results show that species interactions structured this community, and illustrate the need for investigations of other communities.  相似文献   

19.
It has been hypothesized that species living in small lentic water bodies, because of the short-term geological persistence of their habitat, should show higher dispersal ability, with increased gene flow among populations and a less pronounced phylogeographical structure. Conversely, lotic species, living in more geologically stable habitats, should show reduced dispersal and an increased phylogeographical structure at the same geographical scales. In this work we tested the influence of habitat type in two groups of aquatic Coleoptera ( Nebrioporus ceresyi and Ochthebius notabilis groups, families Dytiscidae and Hydraenidae respectively), each of them with closely related species typical of lotic and lentic saline Western Mediterranean water bodies. We used mitochondrial cox1 sequence data of 453 specimens of 77 populations through the range of nine species to compare a lotic vs. a lentic lineage in each of the two groups. Despite the differences in biology (predators vs. detritivorous) and evolutionary history, in both lotic lineages there was a higher proportion of nucleotide diversity among than within groups of populations, and a faster rate of accumulation of haplotype diversity (as measured by rarefaction curves) than in the lentic lineages. Similarly, lotic lineages had a higher absolute phylogenetic diversity, more remarkable considering their smaller absolute geographical ranges. By comparing closely related species, we were able to show the effect of contrasting habitat preferences in two different groups, in agreement with predictions derived from habitat stability.  相似文献   

20.
Sustained demographic studies are essential for early detection of species decline in time for effective management response. A paucity of such background data hindered the potential for successful conservation during the global amphibian decline and remains problematic today. The current study analysed 6 years of mark‐recapture data to determine the vital demographic rates in three habitat precincts of the threatened frog, Litoria aurea (Hylidae) and to understand the underlying causes of variability in population size. Variability in population size of L. aurea was similar to many pond‐breeding species; however this level of fluctuation is rare among threatened amphibians. Highly variable populations are at greater risk of local extinction and the low level of connectivity between L. aurea populations means they are at a greater risk of further decline due to stochastic extinction events and incapacity to recolonize distant habitat. We recommend that management of this species should encourage recolonization through creation of habitat corridors and reintroduction of L. aurea to areas where stochastic extinction events are suspected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号