首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polymerase chain reaction (PCR) primer, 28KJ (5-GGCGGTAAATTCCGTCC-3), was developed to specifically amplify plant DNA. This primer is located approximately 250 bases downstream of the 5′ end of the 28S ribosomal RNA gene, and it was used in combination with the universal primer 28C. The specificity of this primer combination was tested against 31 angiosperms, 9 conifers, 1 alga and 30 fungi (21 basidiomycetes and 9 ascomycetes). Both herbarium specimens and fresh samples were tested. The 28KJ/28C primer combination successfully amplified all angiosperm and conifer DNAs, but no fungal or algal DNAs. Plant DNA was amplified from plant/fungal symbioses (ectomycorrhizae of conifers and ericoid mycorrhizae of Ericaceous plants), and the plants involved in these symbioses were identified by comparing DNA sequences or restriction enzyme digest patterns of the mycorrhizal DNAs to those of known plant samples. These methods allow rapid and accurate identification of plant associates in complex plant/ fungal systems when the identity of the roots is unclear.  相似文献   

2.
DNA coding for the 16S rRNA of an intracellular bacterium was directly amplified from lysed cells of a host amoebae using the polymerase chain reaction and primers specific for eubacteria. The amoebae had been used to recover an uncultured bacterium observed in the sputum of a patient with pneumonia. The amplified DNA was sequenced directly and compared with published 16S rRNA sequences. The analysis revealed that the intracellular bacterium is a member of the genus Legionella and that it is different from species, including L. pneumophila, for which 16S ribosomal RNA sequence data are available.  相似文献   

3.
16S ribosomal DNA amplification for phylogenetic study.   总被引:231,自引:9,他引:231       下载免费PDF全文
  相似文献   

4.
A rapid and effective method for the direct extraction of high molecular weight amplifiable DNA from two coral reef sediments was developed. DNA was amplified by the polymerase chain reaction (PCR) using 16S rDNA specific primers. The amplicons were digested with HaeIII, HinP1I and MspI and separated using polyacrylamide gel electrophoresis and silver staining. The resulting amplified ribosomal DNA restriction analysis (ARDRA) patterns were used as a fingerprint to discern differences between the coral reef sediment samples. Results indicated that ARDRA is an effective method for determining differences within the bacterial community amongst different environmental samples.  相似文献   

5.
A set of polymerase chain reaction primers were designed, which amplify a c. 1 kb fragment of the 18S ribosomal DNA gene, and are specific to the phylum Nematoda. These have proven useful in isolating nematode genes from samples mixed with other biological material, particularly with application to DNA barcoding. Optimal reaction conditions are described. These primers have successfully amplified the correct fragment from a wide phylogenetic range of nematodes, and have so far generated no sequences from any other organismal group.  相似文献   

6.
The 23S ribosomal DNAs were amplified from 11 strains of Leptospira interrogans sensu lato by polymerase chain reaction (PCR) and sequenced. The PCR products of about 290-bp DNA fragments indicated more than 97% sequence similarity to each other. The phylogenetic tree based on the 23S ribosomal DNAs obtained in this study revealed that 11 strains of L. interrogans examined composed a cluster distinct to that of L. weilii and L. borgpetersenii, confirming that these strains were similar to strain Moulton of L. interrogans serovar canicola in 23S rDNA sequence.  相似文献   

7.
A protocol for efficient extraction of fungal DNA from micromycetes colonising painted art objects was developed. Polymerase chain reaction (PCR) inhibitors were successfully removed by a combined application of a Chelex-100 adsorption resin and a Geneclean Kit for Ancient DNA. Universal fungal primers for PCR amplification of 28S rDNA (U1 and U2) were tested for their applicability in denaturing gradient gel electrophoresis (DGGE) analysis of fungal communities. Artificially produced mortar samples inoculated with fungal pure cultures isolated from mural paintings were used as model objects for DNA extractions and DGGE analysis. Good resolution in DGGE was achieved using 260-bp rDNA fragments amplified with U1/DGGE and U2 primers directly from model communities.  相似文献   

8.
Specific DNA sequences from native bacterial populations present in soil, sediment, and sand samples were amplified by using the polymerase chain reaction with primers for either "universal" eubacterial 16S rRNA genes or mercury resistance (mer) genes. With standard amplification conditions, 1.5-kb rDNA fragments from all 12 samples examined and from as little as 5 micrograms of soil were reproducibly amplified. A 1-kb mer fragment from one soil sample was also amplified. The identity of these amplified fragments was confirmed by DNA-DNA hybridization.  相似文献   

9.
Specific DNA sequences from native bacterial populations present in soil, sediment, and sand samples were amplified by using the polymerase chain reaction with primers for either "universal" eubacterial 16S rRNA genes or mercury resistance (mer) genes. With standard amplification conditions, 1.5-kb rDNA fragments from all 12 samples examined and from as little as 5 micrograms of soil were reproducibly amplified. A 1-kb mer fragment from one soil sample was also amplified. The identity of these amplified fragments was confirmed by DNA-DNA hybridization.  相似文献   

10.
A rapid and sensitive method for the detection of genetically engineered microorganisms in soil and sediments has been devised by in vitro amplification of the target DNAs by a polymerase chain reaction. A cloned catechol 2,3-dioxygenase gene located on the recombinant plasmid pOH101 was transferred to Pseudomonas putida MMB2442 by triparental crossing and used as a target organism. For the polymerase chain reaction from soil and sediment samples, the template DNA was released from a 100-mg soil sample. Bacterial seeded soil samples were washed with Tris-EDTA buffer (pH 8.0) and treated with a detergent lysis solution at 100°C. After addition of 1% polyvinylpolypyrrolidine solution, the samples were boiled for 5 min. Supernatant containing nucleic acid was purified with a PCR purification kit. The purified DNA was subjected to polymerase chain reaction, using two specific primers designed for the amplification of catechol 2,3-dioxygenase gene sequences. The detection limit was 102 cells per gram of soil. This method is rapid and obviates the need for lengthy DNA purification from soil samples. Received 28 February 1997/ Accepted in revised form 23 November 1997  相似文献   

11.
Polymerase chain reaction was used to amplify the low copy number of two 16S ribosomal gene fragments from soil and sediment extracts. Total DNA for polymerase chain reaction was extracted from 1 g of seeded or unseeded samples by a rapid freeze-and-thaw method. Amplified DNA fragments can be detected in DNA fractions isolated from seeded soil containing less than 3 Escherichia coli cells and from seeded sediments containing less than 10 cells. This research demonstrated that coupling polymerase chain reaction to direct DNA extraction improves sensitivity by 1 and 2 orders of magnitude for sediments and soils, respectively. This technique could become a powerful tool for genetic ecology studies.  相似文献   

12.
Polymerase chain reaction was used to amplify the low copy number of two 16S ribosomal gene fragments from soil and sediment extracts. Total DNA for polymerase chain reaction was extracted from 1 g of seeded or unseeded samples by a rapid freeze-and-thaw method. Amplified DNA fragments can be detected in DNA fractions isolated from seeded soil containing less than 3 Escherichia coli cells and from seeded sediments containing less than 10 cells. This research demonstrated that coupling polymerase chain reaction to direct DNA extraction improves sensitivity by 1 and 2 orders of magnitude for sediments and soils, respectively. This technique could become a powerful tool for genetic ecology studies.  相似文献   

13.
Genomic DNA was extracted from 13 samples of Sargassum polycystum and S. siliquosum collected from various localities around Peninsular Malaysia and Singapore by using four different extraction methods. The yields and the suitability of the DNA to be used as template for the polymerase chain reaction (PCR) was compared. DNA samples were subjected to PCR analysis by using random primers. Only DNA samples that were extracted using the CTAB method were successfully amplified by random amplified polymorphic DNA (RAPD)-PCR. Five of 31 random primers (OPA02, OPA03, OPA04, OPA13 and OPM10) tested amplified sequences of DNA from the DNA samples. Reproducible, amplified products were obtained using these primers and showed some potential to be useful in discriminating individual samples within the genus, in determining relationships between species within a genus and in developing individual fingerprints for individual samples.  相似文献   

14.
The polymerase chain reaction (PCR) was used to amplify a fragment of the ribosomal DNA (rDNA) from species and undescribed populations of Aphelenchoides and Ditylenchus angustus. The PCR primers used were based on conserved sequences in the 18S and 26S ribosomal RNA genes of Caenorhabditis elegans. In C. elegans, these primers amplify a 1,292 base pair (bp) fragment, which consists of the two internal transcribed spacers and the entire 5.8S gene. Amplification products from crude DNA preparations of 12 species and populations of Aphelenchoides and from D. angustus ranged in size from approximately 860-1,100bp. Southern blots probed with a cloned ribosomal repeat from C. elegans confirmed the identity of these amplified bands as ribosomal fragments. In addition to the differing sizes of the amplified rDNA fragments, the relative intensity of hybridization with the C. elegans probe indicated varying degrees of sequence divergence between species and populations. In some cases, amplified rDNA from the fungal host was evident. Storage of A. composticola at - 45 C for 2 years did not affect the ability to obtain appropriate amplified products from crude DNA preparations. Amplified rDNA fragments were cut with six restriction enzymes, and the restriction fragments produced revealed useful diagnostic differences between species and some undescribed populations. These results were consistent with previous studies based on morphology and isoenzymes. Three undescribed populations of Aphelenchoides were found to be different from all the species examined and from each other.  相似文献   

15.
Rapid purification of DNA from soil for molecular biodiversity analysis   总被引:5,自引:0,他引:5  
A rapid DNA extraction method utilizing a bead-beating machine is described. High molecular weight DNA could be extracted from up to 24 samples in less than 2 h. The DNA was suitable for direct use in the polymerase chain reaction (PCR). Both prokaryotic and eukaryotic cells were successfully lysed by the method, established using primers specific for these groups. The small subunits ribosomal RNA (rRNA) spacer region from both eukaryotes and eubacteria could be readily amplified with DNA from different soils generating different amplification patterns.  相似文献   

16.
A two-step strategy is described here to rapidly analyze gene-sequence variation or polymorphism. First, DNA sequences flanking the coding region of the gene to be analyzed are determined directly from a cosmid clone, including the gene, using the modified T7 DNA polymerase and sequencing primers based on the cDNA sequence of the gene. Second, the identified gene-flanking sequences are used to design amplification primers for the polymerase chain reaction (PCR) to permit amplification of DNA segments of up to 1 kilobase in genomic DNA from multiple individuals. These amplified DNA segments are directly sequenced using the thermostable Taq DNA polymerase.  相似文献   

17.
The 16S ribosomal RNA gene sequence of the pentachlorophenol degrader Sphingomonas chlorophenolica strain RA2 was used to generate specific polymerase chain reaction (PCR) primers for the detection of this strain in soil, whereas a region internal to the two primers was used to provide an S. chlorophenolica strain RA2-specific oligonucleotide probe. The PCR detection system resulted in a 727 bp product detectable via gel electrophoresis and hybridization. It was specific for strain RA2 and its close relative, S. chlorophenolica ATCC 39723, as evidenced by PCR amplifications of a range of bacterial genomic DNAs. Tests of total microbial community DNA obtained from five uninoculated and two RA2-inoculated soils confirmed this specificity for introduced S. chlorophenolica RA2. Strain RA2 could be detected in soil down to a level of 103 cfu g−1 soil. Two strategies were followed to generate internal standard DNA for competitive PCR. First, a 479 bp MIMICS fragment was obtained based on a previously constructed gene cassette; however, this standard did not reliably quantify RA2 targets. Low stringency PCR performed with a range of bacterial genomic DNAs resulted in the generation of an amplicon with a Paenibacillus azotofixans strain that was slightly smaller than the RA2-derived product. Both products were easily separable via conventional gel electrophoresis. The use of this competitor in a threefold dilution scheme applied to the target DNA allowed for the quantitative detection of RA2-specific target DNA molecules from pure culture and from soil. The fate of strain RA2 in pentachlorophenol-contaminated soil was described using this competitive PCR approach, and the organism was shown to persist at two inoculum levels over prolonged periods of time.  相似文献   

18.
Abstract 1 A simple, yet sensitive polymerase chain reaction based technique was developed for the detection of the apple‐grass aphid Rhopalosiphum insertum in the gut of Anystis baccarum, a predatory mite. 2 A range of conserved polymerase chain reaction primers for insect mitochondrial and ribosomal DNA were tested in order to amplify R. insertum DNA. The mitochondrial DNA primers LrRNAR2 + N1F1, amplified a region between the ND1 and large subunit RNA genes. 3 DNA sequencing of the R. insertum ND1‐LRNA polymerase chain reaction product allowed aphid‐specific polymerase chain reaction primers to be designed. These amplified a 283‐bp product from individual aphids. No polymerase chain reaction product was amplified from individual A. baccarum. 4 Using the aphid‐specific primers against A. baccarum fed on R. insertum, the diagnostic 283‐bp product was amplified. 5 Two restriction enzymes (RsaI and AluI) produced patterns that allowed unambiguous identification of R. insertum DNA from that of Macrosiphum euphorbiae and Myzus persicae.  相似文献   

19.
The ability to rapidly identify and quantify a microbial strain in a complex environmental sample has widespread applications in ecology, epidemiology, and industry. In this study, we describe a rapid method to obtain functionally specific genetic markers that can be used in conjunction with standard or real-time polymerase chain reaction (PCR) to determine the abundance of target fungal strains in selected environmental samples. The method involves sequencing of randomly cloned AFLP (amplified fragment length polymorphism) products from the target organism and the design of PCR primers internal to the AFLP fragments. The strain-specific markers were used to determine the fate of three industrially relevant fungi, Aspergillus niger, Aspergillus oryzae, and Chaetomium globosum, during a 4 month soil microcosm experiment. The persistence of each of the three fungal strains inoculated separately into intact soil microcosms was determined by PCR analyses of DNA directly extracted from soil. Presence and absence data based on standard PCR and quantification of the target DNA by real-time PCR showed that all three strains declined after inoculation (approximately 14-, 32-, and 4-fold for A. niger, A. oryzae, and C. globosum, respectively) but remained detectable at the end of the experiment, suggesting that these strains would survive for extended periods if released into nature.  相似文献   

20.
Fungi fulfil a range of important ecological functions, yet current understanding of fungal biodiversity in soil is limited. Direct DNA extraction from soil, coupled with polymerase chain reaction amplification and community profiling techniques, has proved successful in investigations of bacterial ecology and shows great promise for elucidating the taxonomic and functional characteristics of soil fungal communities. These community profiling techniques include denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), single-strand conformation polymorphism (SSCP), terminal restriction fragment length polymorphism (T-RFLP), amplified rDNA restriction analysis (ARDRA), amplified ribosomal intergenic spacer analysis (ARISA) and cloning, and are generally coupled with DNA sequencing. The techniques and their potential limitations are discussed, along with recent advances that have been made possible through their application in soil fungal ecology. It is unlikely that a single approach will be universally applicable for assessing fungal diversity in all soils or circumstances. However, judicious selection of the methodology, keeping the experimental aims in mind, and the exploitation of emerging technologies will undoubtedly increase our understanding of soil fungal communities in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号