首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of the present study was to investigate the properties and role of capacitative Ca2+ entry (CCE) in interstitial cells (IC) isolated from the rabbit urethra. Ca2+ entry in IC was larger in cells with depleted intracellular Ca2+ stores compared with controls, consistent with influx via a CCE pathway. The nonselective Ca2+ entry blockers Gd3+ (10 µM), La3+ (10 µM), and Ni2+ (100 µM) reduced CCE by 67% (n = 14), 65% (n = 11), and 55% (n = 9), respectively. These agents did not inhibit Ca2+ entry when stores were not depleted. Conversely, CCE in IC was resistant to SKF-96365 (10 µM), wortmannin (10 µM), and nifedipine (1 µM). Spontaneous transient inward currents were recorded from IC voltage-clamped at –60 mV. These events were not significantly affected by Gd3+ (10 µM) or La3+ (10 µM) and were only slightly decreased in amplitude by 100 µM Ni2+. The results from this study demonstrate that freshly dispersed IC from the rabbit urethra possess a CCE pathway. However, influx via this pathway does not appear to contribute to spontaneous activity in these cells. smooth muscle; patch clamp; spontaneous transient inward currents  相似文献   

2.
In the past decade, there have been remarkable advances in our understanding of the calcium messenger system that mediates the effects of various agonists. The purpose of the present article is to describe two areas of current interest in the calcium signaling field--quantal calcium release and calcium entry into the cell--using the pancreatic acinar cell as a model. Proposed mechanisms describing these phenomena and the role they play in the kinetics of calcium movements in the cell are discussed.  相似文献   

3.
Calcium entry through store-operated calcium channels is an important entry mechanism. In the present report we have described a novel calcium entry pathway that is independent of depletion of intracellular calcium stores. Treatment of the cells with the phosphatase inhibitor calyculin A (caly A), which blocked thapsigargin-evoked store-operated calcium entry (SOCE), induced a potent concentration-dependent calcium entry. In a calcium-free buffer, acute addition of caly A evoked a very modest increase in cytosolic free calcium ([Ca(2+)](i)). This increase was not from the agonist-mobilizable calcium stores, as the thapsigargin-evoked increase in [Ca(2+)](i) was unaltered in caly A-treated cells. The caly A-evoked calcium entry was not blocked by Gd(3+) or 2-APB, whereas SOCE was. Caly A enhanced the entry of barium, indicating that the increase in intracellular calcium was not the result of a decreased extrusion of calcium from the cytosol. Jasplakinolide and cytochalasin D had only marginal effects on calcium entry. The protein kinase A (PKA) inhibitor H-89 and an inhibitory peptide for PKA abolished the caly A-evoked entry of both calcium and barium. The SOCE was, however, enhanced in cells treated with H-89. In cells grown in the absence of thyrotropin (TSH), the caly A-evoked entry of calcium was smaller compared with cells grown in TSH-containing buffer. Stimulation of cells grown without TSH with forskolin or TSH restored the calyculin A-evoked calcium entry to that seen in cells grown in TSH-containing buffer. SOCE was decreased in these cells. Our results thus suggest that TSH, through the production of cAMP and activation of PKA, regulates a calcium entry pathway in thyroid cells. The pathway is distinctly different from the SOCE. As TSH is the main regulator of thyroid cells, we suggest that the novel calcium entry pathway participates in the regulation of basal calcium levels in thyroid cells.  相似文献   

4.
Although the mechanism by which nicotinic receptors on adrenal chromaffin cells regulate catecholamine secretion is reasonably well understood, that of the muscarinic receptors remains obscure. The effects of both acetylcholine and specific muscarinic agonists on cytosolic free calcium in isolated bovine adrenal chromaffin cells have been measured using the fluorescent probe Quin-2. Acetylcholine (0.1 mM) evokes a large increase in cytosolic free calcium from resting levels near 100 nM into the microM range, most of which is blocked by hexamethonium (0.5 mM) or removal of extracellular calcium. A small component of the acetylcholine-evoked rise in cytosolic free calcium (approximately 50-100 nM) is independent of extracellular calcium and is unaffected by 0.5 mM hexamethonium, but is totally blocked by 0.5 microM atropine. The muscarinic nature of this component is further confirmed by the fact that the muscarinic agonists, muscarine (0.1 mM) and methacholine (0.3 mM), stimulate a 50-100 nM rise in chromaffin cell cytosolic calcium which is blocked by 0.5 microM atropine and is largely independent of extracellular calcium. These results suggest that muscarinic receptors regulate cytosolic calcium in chromaffin cells by a new mechanism different from that of nicotinic receptors, a mechanism utilizing an intracellular calcium source. The small size of the muscarinic-induced rise in cytosolic calcium in the bovine chromaffin cell would explain why no secretion is evoked by muscarinic agonists in this species.  相似文献   

5.
Calcium (Ca(2+))-dependent endocytosis has been linked to preferential Ca(2+) entry through the L-type (α(1D), Ca(V)1.3) of voltage-dependent Ca(2+) channels (VDCCs). Considering that the Ca(2+)-dependent exocytotic release of neurotransmitters is mostly triggered by Ca(2+) entry through N-(α(1B), Ca(V)2.2) or PQ-VDCCs (α(1A), Ca(V)2.1) and that exocytosis and endocytosis are coupled, the supposition that the different channel subtypes are specialized to control different cell functions is attractive. Here we have explored this hypothesis in primary cultures of bovine adrenal chromaffin cells where PQ channels account for 50% of Ca(2+) current (I(Ca)), 30% for N channels, and 20% for L channels. We used patch-clamp and fluorescence techniques to measure the exo-endocytotic responses triggered by long depolarizing stimuli, in 1, 2, or 10 mM concentrations of extracellular Ca(2+) ([Ca(2+)](e)). Exo-endocytotic responses were little affected by ω-conotoxin GVIA (N channel blocker), whereas ω-agatoxin IVA (PQ channel blocker) caused 80% blockade of exocytosis as well as endocytosis. In contrast, nifedipine (L channel blocker) only caused 20% inhibition of exocytosis but as much as 90% inhibition of endocytosis. Conversely, FPL67146 (an activator of L VDCCs) notably augmented endocytosis. Photoreleased caged Ca(2+) caused substantially smaller endocytotic responses compared with those produced by K(+) depolarization. Using fluorescence antibodies, no colocalization between L, N, or PQ channels with clathrin was found; a 20-30% colocalization was found between dynamin and all three channel antibodies. This is incompatible with the view that L channels are coupled to the endocytotic machine. Data rather support a mechanism implying the different inactivation rates of L (slow-inactivating) and N/PQ channels (fast-inactivating). Thus a slow but more sustained Ca(2+) entry through L channels could be a requirement to trigger endocytosis efficiently, at least in bovine chromaffin cells.  相似文献   

6.
Long G  Pan X  Kormelink R  Vlak JM 《Journal of virology》2006,80(17):8830-8833
Entry of the budded virus form of baculoviruses into insect and mammalian cells is generally thought to occur through a low-pH-dependent endocytosis pathway, possibly through clathrin-coated pits. This insight is primarily based on (immuno)electron microscopy studies but requires biochemical support to exclude the use of other pathways. Here, we demonstrate using various inhibitors that functional entry of baculoviruses into insect and mammalian cells is primarily dependent on clathrin-mediated endocytosis. Our results further suggest that caveolae are somehow involved in baculovirus entry in mammalian cells. A caveolar endocytosis inhibitor, genistein, enhances baculovirus transduction in these cells considerably.  相似文献   

7.
Several sphingolipid derivatives, including sphingosylphosphorylcholine (SPC), regulate a multitude of biological processes. In the present study we show that both human thyroid cancer cells (FRO cells) and normal human thyroid cells express G protein-coupled receptor 4 (GPR4) and ovarian cancer G protein-coupled receptor 1 (OGR1), putative SPC-specific receptors. In FRO cells SPC evoked a concentration-dependent increase in intracellular free calcium concentration ([Ca2+]i) in a calcium containing, but not in a calcium-free buffer. Sphingosine 1-phosphate (S1P) evoked an increase in [Ca2+]i in both a calcium containing and a calcium-free buffer. The phospholipase C (PLC) inhibitor U 73122 potently attenuated the effect of SPC, suggesting that effects of SPC were mediated by a G protein coupled receptor. Overnight pretreatment of the cells with pertussis toxin did not affect the SPC-evoked response. Interestingly, SPC did not evoke an increase in inositol phosphates, although S1P did so. Furthermore, in cells pretreated with thapsigargin to deplete intracellular calcium stores, SPC still evoked an increase in [Ca2+]i, suggesting that SPC mainly evoked entry of extracellular calcium. When the cells were pretreated with the protein kinase C (PKC) inhibitor GF 109203X, or when the cells were pretreated with PMA for 24 h, the SPC-evoked calcium entry was attenuated. Thus, the SPC-evoked calcium entry was apparently dependent on PKC. In sharp contrast, the increase in [Ca2+]i evoked by S1P was not sensitive to GF 109203X. Furthermore, the calcium entry evoked by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol was not inhibited by GF 109203X. In addition, SPC decreased the incorporation of 3H-thymidine in a concentration-dependent manner in FRO cells. Taken together, SPC may be an important factor regulating thyroid cancer cell function.  相似文献   

8.
Sustained, mild K+ depolarization caused bovine chromaffin cell death through a Ca(2+)-dependent mechanism. During depolarization, Ca(2+) entered preferentially through L-channels to induce necrotic or apoptotic cell death, depending on the duration of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) signal, as proven by the following. (i) The L-type Ca(2+) channel activators Bay K 8644 and FPL64176, more than doubled the cytotoxic effects of 30 mm K+; (ii) the L-type Ca(2+) channel blocker nimodipine suppressed the cytotoxic effects of K+ alone or K+ plus FPL64176; (iii) the potentiation by FPL64176 of the K+ -evoked [Ca(2+)](c) elevation was totally suppressed by nimodipine. Cell exposure to K+ plus the L-type calcium channel agonist FPL64176 caused an initial peak rise followed by a sustained elevation of the [Ca(2+)](c) that, in turn, increased [Ca(2+)](m) and caused mitochondrial membrane depolarization. Cyclosporin A, a blocker of the mitochondrial transition pore, and superoxide dismutase prevented the apoptotic cell death induced by Ca(2+) overload through L-channels. These results suggest that Ca(2+) entry through L-channels causes both calcium overload and mitochondrial disruption that will lead to the release of mediators responsible for the activation of the apoptotic cascade and cell death. This predominant role of L-type Ca(2+) channels is not shared by other subtypes of high threshold voltage-dependent neuronal Ca(2+) channels (i.e. N, P/Q) expressed by bovine chromaffin cells.  相似文献   

9.
Inhibitors of vacuolar proton-ATPase activity (5 microM bafilomycin A1 or 50 nM concanamycin A) prevented infection by reovirus particles but not by infectious subviral particles (ISVPs). Neither compound affected virus attachment or internalization. However, both compounds potently blocked cleavage of the viral protein mu 1C. Finally, both reovirus particles and ISVPs efficiently translocated the toxin alpha-sarcin to the cytosol during virus entry. Bafilomycin A1 blocked translocation of alpha-sarcin by reovirus particles but not by ISVPs.  相似文献   

10.
Summary The kinetic and steady-state characteristics of calcium currents in cultured bovine adrenal chromaffin cells were analyzed by the patch-clamp technique. Whole cell inward Ca2+ currents, recorded in the presence of either 5.2 or 2.6mm Ca2+ exhibited a single, noninactivating component. To analyze the effects of Ca2+ and Bay K-8644 on the kinetics of the Ca2+ currents, we used a modified version of the Hodgkin-Huxley empirical model. At physiological [Ca2+] (2.5mm) the midpoint of the steady-state Ca2+-channel activation curve lay at –6.9 mV. Increasing the [Ca2+] to 5.2mm shifted the midpoint by –4.3 mV along the voltage axis. At the midpoint, changes in potential of 7.8 mV (for 5.2mm Ca2+) and 9.2 mV (for 2.5mm Ca2+) induced ane-fold change in the activation of the current. Increasing [Ca2+]0 from 2.5 to 5.2mm induced a marked increase in the rate constant for turning on the Ca2+ permeability. Conductances were estimated from the slope of the linear part of the currentvoltage relationships as 8.7 and 4.2 nS in the presence of 5.2 and 2.5mm Ca2+, respectively. Incubation of the cells in the presence of Bay K-8644 at increasing concentrations from 0.001 to 0.1 m increased the slope conductance from 4.2 to 9.6 nS. Further increases in the concentration of Bay K-8644 from 1 to 100 m induced a marked reduction in the conductance to 1.1 nS. In the presence of Bay K-8644 (0.1 m) the midpoint of the activation curve was shifted by 6.1 mV towards more negative potentials, i.e., from –6.9 to –13 mV. At the midpoint potential of –13 mV, a change in potential of 6.9 mV caused ane-fold change in Ca2+ permeability. The kinetic analysis showed that Bay K-8644 significantly reduced the size of the rate constant for turning off the Ca2+ permeability.  相似文献   

11.
10 GH3/B6 cells were patched-clamped using a pipette containing NMG as internal cation, 2 mM ATP and 100 microM leupeptin. Whole-cell calcium or barium currents were recorded prior and after PMA (10(-8) or 10(-7) M). PMA increased the inward calcium current at potential levels close to threshold in 8 cells; 7 cells only exhibited an increase in transitory calcium current at potential levels close to threshold; in one cell, both transitory and conventional calcium currents were increased. 2 cells did not respond to PMA.  相似文献   

12.
Adrenal chromaffin cells secrete catecholamines in response to cholinergic receptor activation by acetylcholine (ACh). Characteristics of Ca(2+) transients induced by activation of nicotinic (nAChRs) and muscarinic (mAChRs) receptors were analyzed using Fura-2 fluorescent measurements on rat chromaffin cells. We first found two populations of chromaffin cells, which differently responded on AChR stimulation. In the first group (n-cells), consecutive ACh applications evoked persistent Ca(2+) transients, whereas desensitizing transients were observed in the other group (m-cells). The AChR agonists and antagonists precisely imitated or abolished the ACh action on n- and m-type cells, respectively. Cytochemical staining showed that n-cells contained adrenaline, whereas m-cells-noradrenaline. Thus, for the first time we found that nAChRs and mAChRs are differentially expressed in adrenergic and noradrenergic chromaffin cells, respectively. Our data suppose that chromaffin cells can be differentially regulated by incoming ACh signals and in such way release different substances-adrenaline and noradrenaline.  相似文献   

13.
We investigated the intracellular signals underlying the neurotrophic response of adult bovine chromaffin cells to histamine and basic fibroblast growth factor (bFGF). Histamine produced significant neurite outgrowth within 48 hr, whereas the response to bFGF developed after 1 week. H7, a protein kinase C (PKC) inhibitor potentiated both the histamine and the bFGF responses, while another PKC antagonist, staurosporine, induced a rapid and efficient differentiation response when applied alone. These observations suggest that basal PKC activity is required for stabilization of the endocrine phenotype in these cells. They contrast with findings on NGF induction of neurite outgrowth in PC12 cells where PKC promotes differentiation, apparently by activating the fos/jun complex. Thus, we examined the role of c-fos in our model. Both histamine and bFGF induced c-fos gene expression transiently. To determine whether increased levels of c-fos oncoprotein were essential to the differentiation process, we used a hybrid arrest approach employing an innovative transfection technique applicable to primary culture systems. Transfection with plasmid pSVsof, producing antisense c-fos mRNA, reduced c-fos oncoprotein levels but did not diminish histamine-induced neurite outgrowth. We infer that histamine-induced differentiation in bovine chromaffin cells is independent of increased levels of c-fos oncoprotein.  相似文献   

14.
15.
16.
Neurons are a diverse cell type exhibiting hugely different morphologies and neurotransmitter specifications. Their distinctive phenotypes are established during differentiation from pluripotent precursor cells. The signalling pathways that specify the lineage down which neuronal precursor cells differentiate remain to be fully elucidated. Among the many signals that impinge on the differentiation of neuronal cells, cytosolic calcium (Ca2+) has an important role. However, little is known about the nature of the Ca2+ signals involved in fate choice in neuronal precursor cells, or their sources. In this study, we show that activation of either muscarinic or platelet-derived growth factor (PDGF) receptors induces a biphasic increase in cytosolic Ca2+ that consists of release from intracellular stores followed by sustained entry across the plasma membrane. For both agonists, the prolonged Ca2+ entry occurred via a store-operated pathway that was pharmacologically indistinguishable from Ca2+ entry initiated by thapsigargin. However, muscarinic receptor-activated Ca2+ entry was inhibited by siRNA-mediated knockdown of TRPC6, whereas Ca2+ entry evoked by PDGF was not. These data provide evidence for agonist-specific activation of molecularly distinct store-operated Ca2+ entry pathways, and raise the possibility of privileged communication between these Ca2+ entry pathways and downstream processes.  相似文献   

17.
The characteristics and properties of the increase in cytosolic [Ca2+] that occurs in bovine adrenal medullary chromaffin cells on exposure to angiotensin II have been investigated. In fura-2 loaded cells exposure to a maximally effective concentration of angiotensin II (100 nM) caused a rapid, but transient increase in cytosolic [Ca2+] followed by a lower plateau that was sustained as long as external Ca2+ was present. In the absence of external Ca2+ only the initial brief transient was observed. In cells previously treated with thapsigargin in Ca2+-free medium to deplete the internal Ca2+ stores, angiotensin II caused no increase in cytosolic [Ca2+] when external Ca2+ was absent. Reintroduction of external Ca2+ to thapsigargin-treated, store-depleted cells caused a sustained increase in cytosolic [Ca2+] that was not further increased upon exposure to angiotensin II. Analysis of the data suggests that in bovine chromaffin cells angiotensin II causes Ca2+ entry via a pathway(s) activated as a consequence of internal store mobilization, and entry through this pathway(s) forms the majority of the sustained Ca2+ influx evoked by angiotensin II.  相似文献   

18.
Vanadate can activate the uptake of Ca in A431 epidermal carcinoma cells by two- to fivefold with no detectable lag period. Preincubation with epidermal growth factor (EGF) to down-regulate the EGF receptor prevents subsequent stimulation by EGF but not that by vanadate. Ca uptake is sodium-independent and is not activated by depolarization in high KCl. On the contrary, vanadate-stimulated uptake is completely inhibited by decreasing the plasma membrane potential from about -65 to -30 mV. These results demonstrate that the EGF receptor is not itself functioning as a Ca channel, that vanadate is not acting at the level of EGF receptor, and that the Ca transport system exhibits an unusual potential sensitivity in that it is inhibited by depolarization of the plasma membrane.  相似文献   

19.
We have investigated the effects of substrate-bound laminin on levels of enzymes of the catecholamine biosynthetic pathway in primary cultures of calf adrenal chromaffin cells. Laminin increases the levels of the enzymes tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyl-transferase. This effect is selective, in that levels of other enzymes (lactate dehydrogenase, aromatic amino acid decarboxylase, and acetylcholinesterase) are not increased. The effect of laminin can be blocked by antibodies directed against a fragment of the heparin-binding domain of the molecule, whereas antibodies directed against other fragments do not block the increase in tyrosine hydroxylase. Thus the laminin domain involved in enzyme regulation in chromaffin cells is apparently the same as that previously implicated in laminin's interactions with neurons to potentiate survival and stimulate neurite outgrowth (Edgar, D., R. Timpl, and H. Thoenen, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1463-1468). The increase in chromaffin cell tyrosine hydroxylase levels is preceded by an activation of the enzyme in which the Vmax (but not the Km) is altered. The effects of laminin appear to be developmentally regulated, since neither activation nor increased levels of tyrosine hydroxylase occur in adult adrenal chromaffin cells exposed to laminin.  相似文献   

20.
Cellular mechanisms of bovine viral diarrhea virus (BVDV) entry in MDBK cells were investigated. Chloroquine, bafilomycin A1, or ammonium chloride inhibited BVDV infection, indicating that an acidic endosomal pH is required for BVDV entry. The tyrosine kinase inhibitor genistein partially inhibited BVDV infection at a postentry step, whereas BVDV entry was strongly inhibited by chlorpromazine or by the overexpression of a dominant-negative form of EPS15, a protein essential for the formation of clathrin-coated vesicles at the plasma membrane. Together, these data indicate that BVDV infection requires an active clathrin-dependent endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号