首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To identify Bacillus species and related genera by fingerprinting based on ribosomal RNA gene restriction patterns; to compare ribosomal RNA gene restriction patterns-based phylogenetic trees with trees based on 16S rRNA gene sequences; to evaluate the usefulness of ribosomal RNA gene restriction patterns as a taxonomic tool for the classification of Bacillus species and related genera. METHODS AND RESULTS: Seventy-eight bacterial species which include 42 Bacillus species, 31 species from five newly created Bacillus-related genera, and five species from five phenotypically related genera were tested. A total of 77 distinct 16S rRNA gene hybridization banding patterns were obtained. The dendrogram resulting from UPGMA analysis showed three distinct main genetic clusters at the 75% banding pattern similarity. A total of 77 distinct 23S and 5S rRNA genes hybridization banding patterns were obtained, and the dendrogram showed four distinct genetic clusters at the 75% banding pattern similarity. A third dendrogram was constructed using a combination of the data from the 16S rRNA gene fingerprinting and the 23S and 5S rRNA genes fingerprinting. It revealed three distinct main phylogenetic clusters at the 75% banding pattern similarity. CONCLUSIONS: The Bacillus species along with the species from related genera were identified successfully and differentiated by ribosomal RNA gene restriction patterns, and most were distributed with no apparent order in various clusters on each of the three dendrograms. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data indicate that ribosomal RNA gene restriction patterns can be used to reconstruct the phylogeny of the Bacillus species and derived-genera that approximates, but does not duplicate, phylogenies based on 16S rRNA gene sequences.  相似文献   

2.
Rodents, collected in three zoogeographical regions across Slovenia, were tested for the presence of bartonellae using direct PCR-based amplification of 16S/23S rRNA gene intergenic spacer region (ITS) fragments from splenic DNA extracts. Bartonella DNA was detected in four species of rodents, Apodemus flavicollis, Apodemus sylvaticus, Apodemus agrarius and Clethrionomys glareolus, in all three zoogeographic regions at an overall prevalence of 40.4%. The prevalence of infection varied significantly between rodent species and zoogeographical regions. Comparison of ITS sequences obtained from bartonellae revealed six sequence variants. Four of these matched the ITS sequences of the previously recognized species, Bartonella taylorii, Bartonella grahamii, Bartonella doshiae and Bartonella birtlesii, but one was new. The identity of the bartonellae from which the novel ITS sequences was obtained were further assessed by sequence analysis of cell division protein-encoding gene (ftsZ) fragments. This analysis demonstrated that the strain is most likely a representative of possible new species within the genus.  相似文献   

3.
In an effort to overcome historical problems associated with the isolation of Bartonella species from animal and human blood samples, our laboratory developed a novel, chemically modified, insect-based, liquid culture medium (Bartonella alpha-Proteobacteria growth medium, BAPGM). In this study, we describe the isolation of non-Bartonella bacteria from aseptically obtained human blood and tissue samples that were inoculated into BAPGM pre-enrichment culture medium, and were obtained during attempts to define each individuals Bartonella infection status. After incubation for at least 7 days in liquid BAPGM, pre-enriched inoculums were sub-cultured onto a BAPGM/blood agar plate. Bacterial DNA was extracted from pooled plated colonies and amplified using conventional PCR targeting the 16S rRNA gene. Subsequently, amplicons were cloned, sequenced and compared to GenBank database sequences using the BLAST program. Regardless of the patient's Bartonella status, seventeen samples generated only one 16S rDNA sequence, representing the following genera: Arthrobacter, Bacillus, Bartonella, Dermabacter, Methylobacterium, Propionibacterium, Pseudomonas, Staphylococcus and bacteria listed as "non-cultured" in the GenBank database. Alkalibacterium, Arthrobacter, Erwinia, Kineococcus, Methylobacterium, Propionibacterium, Sphingomonas, and Staphylococcus were isolated from nine Bartonella-infected individuals. Co-isolation of Acinetobacter, Sphingomonas, Staphylococcus spp. and bacteria listed as "non-cultured" in the GenBank database was achieved for four samples in which Bartonella spp. were not detected. Despite the phylogenetic limitations of using partial 16S rRNA gene sequencing for species and strain identification, the investigational methodology described in this study may provide a complementary approach for the isolation and identification of bacteria from patient samples.  相似文献   

4.
The sequence differences within the 16S rRNA genes of Lactobacillus casei/paracasei and related species, Lactobacillus zeae and Lactobacillus rhamnosus, were investigated. Thirty-seven strains of mostly human or cheese origin were grouped by restriction endonuclease analysis (REA) of the total chromosomal DNA and by temporal temperature gradient gel electrophoresis (TTGE) of PCR-amplified 16S rRNA gene fragments. REA verified that all strains were genomically unique and singled out three major clusters, one L. rhamnosus-cluster and two clusters containing L. paracasei strains. The groups obtained by TTGE corresponded with one exception to the REA-clusters. In the TTGE clustering all L. paracasei strains formed one general group with one TTGE-band in common, and this group was sub-divided into five subgroups due to the presence of more than one TTGE-band in four of the subgroups. The occurrence of multiple TTGE-bands was investigated by amplifying and cloning of the 16S rRNA genes from the strains showing this phenomenon, thereby 12 clones from each strain were sequenced, demonstrating polymorphisms in almost all the cases. Subjecting the clones displaying sequence variations to TTGE as well as sequencing of 16S rDNA revealed by ribotyping of the strains, verified the presence of polymorphisms within the 16S rRNA genes. The migration characteristic of amplified DNA from a single clone corresponded to a specific band in the TTGE-pattern of the strain from which the clone originated. Southern blot hybridisation with a 16S rDNA probe demonstrated the presence of at least five 16S rRNA genes in L. casei/paracasei. A higher degree of variable positions than previously reported was observed in the 16S rRNA gene fragments of the members in the complex. Sequence comparison between the 16S rRNA gene copies of L. casei (CCUG 21451T) and L. zeae (CCUG 35515T) demonstrated that the two species shared almost the same sequence in some copies while the others were more different. Our results provide one explanation for the difficulties in reaching clear-cut taxa within the L. casei/paracasei complex.  相似文献   

5.
Various molecular-biological approaches using the 16S rRNA gene sequence have been used for the analysis of human colonic microbiota. Terminal- restriction fragment length polymorphism (T-RFLP) analysis is suitable for a rapid comparison of complex bacterial communities. Terminal-restriction fragment (T-RF) length can be calculated from a known sequence, thus one can predict bacterial species on the basis of their T-RF length by this analysis. The aim of this study was to build a phylogenetic assignment database for T-RFLP analysis of human colonic microbiota (PAD-HCM), and to demonstrate the effectiveness of PAD-HCM compared with the results of 16S rRNA gene clone library analysis. PAD-HCM was completed to include 342 sequence data obtained using four restriction enzymes. Approximately 80% of the total clones detected by 16S rRNA gene clone library analysis were the same bacterial species or phylotypes as those assigned from T-RF using PAD-HCM. Moreover, large T-RFs consisted of common species or phylotypes detected by both analytical methods. All pseudo-T-RFs identified by mung bean nuclease digestion could not be assigned to a bacterial species or phylotype, and this finding shows that pseudo-T-RFs can also be predicted using PAD-HCM. We conclude that PAD-HCM built in this study enables the prediction of T-RFs at the species level including difficult-to-culture bacteria, and that it is very useful for the T-RFLP analysis of human colonic microbiota.  相似文献   

6.
[目的]建立一种新型的军团菌鉴定方法,并探讨该法在鉴定环境水源和临床标本军团菌菌株中的应用价值.[方法]根据军团菌16S rRNA基因保守序列设计引物,以分离培养得到的可疑军团菌菌株作为模板,采用PCR法对模板扩增,并用限制性内切酶对PCR产物进行酶切分析,建立一种嗜肺军团菌及非嗜肺军团菌的鉴定方法.对16株嗜肺军团菌、22株非嗜肺军团菌及12株其他细菌标准菌株进行检测,验证该方法的可靠性,最后用该法检测广州地区分离的169株可疑军团菌菌株并进行基因测序.[结果]该PCR方法检测嗜肺军团菌及非嗜肺军团菌所有标准菌株均为阳性,非军团菌检测结果均为阴性;进一步的Hinf Ⅰ酶切分析可准确的区分嗜肺军团菌标准菌株;广州地区分离的169株可疑军团菌菌株经该法检测发现160株为军团菌,其中79株为嗜肺军团菌,与基因测序检测结果一致.[结论]PCR-酶切技术可快速、特异地检测军团菌及嗜肺军团菌,适用于环境水源和临床标本可疑军团菌菌株的检测.  相似文献   

7.
This study describes actinobacteria isolated from the marine sponge Haliclona sp. collected in shallow water of the South China Sea. A total of 54 actinobacteria were isolated using media selective for actinobacteria. Species diversity and natural product diversity of isolates from marine sponge Haliclona sp. were analysed. Twenty-four isolates were selected on the basis of their morphology on different media and assigned to the phylum Actinobacteria by a combination of 16S rRNA gene based restriction enzymes digestion and 16S rRNA gene sequence analysis. The 16S rRNA genes of 24 isolates were digested by restriction enzymes TaqI and MspI and assigned to different groups according to their restriction enzyme pattern. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Streptomyces, Nocardiopsis, Micromonospora and Verrucosispora; one other isolate was recovered that does not belong to known genera based on its unique 16S rRNA gene sequence. To our knowledge, this is the first report of a bacterium classified as Verrucosispora sp. that has been isolated from a marine sponge. The majority of the strains tested belong to the genus Streptomyces and three isolates may be new species. All of the 24 isolates were screened for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). PKS and NRPS sequences were detected in more than half of the isolates and the different "PKS-I-PKS-II-NRPS" combinations in different isolates belonging to the same species are indicators of their potential natural product diversity and divergent genetic evolution.  相似文献   

8.
Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI, CfoI, AluI, FokI, and RsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in the HinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI, FokI, and HinfI differentiated P. alvei from the phylogenetically closely related species Paenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1, 555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymes CfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity in P. alvei isolates may be a reflection of adaptation to the special habitats in which they originated.  相似文献   

9.
A detailed restriction endonuclease map was prepared for the cloned 5.8 S ribosomal RNA (rRNA) gene region of the brine shrimp Artemia. The nucleotide sequence of the 5.8 S rRNA gene and its flanking nucleotides was determined. This sequence differs in two positions from that of the previously reported 5.8 S rRNA. The primary structure of the Artemia 5.8 S rRNA gene, which, unlike in dipteran insects, is shown to contain no insertion sequence, is conserved according to the relatedness of the species compared. The 5.8 S rRNA gene flanking nucleotides, which were sequenced 176 nucleotide pairs upstream and 70 nucleotide pairs downstream from the gene, show no evidence of sequence conservation between evolutionarily diverse species by computer analysis. Direct nucleotide repeats are present within the flanking sequences at both ends of the gene at about the same distance upstream and downstream, which could serve as processing signals.  相似文献   

10.
A 16S rRNA gene-based fingerprinting method was developed for the identification of Azotobacteraceae and tested onto 48 soil isolates and 28 reference strains belonging to the free-living nitrogen-fixing bacterial group and to the most common species found in soil samples. According to this method, the 16S rRNA gene was amplified using universal primers for Eubacteria and PCR products were subsequently digested with RsaI, HhaI, HpaII, FnuDII, and AluI. The analysis of the restriction profiles obtained showed that the method is able to define a unique species-specific phylotype (SSP) for each of the eight Azotobacteraceae species tested. Cluster analysis was successfully employed for the identification of members of the family Azotobacteraceae, being assignation into species of the isolates confirmed by means of partial 16S rRNA gene sequencing.  相似文献   

11.
Ixodes persulcatus serves as a tick vector for Borrelia garinii and Borrelia afzelii in Japan; however, unidentified spirochetes have been isolated from other species of ticks. In this study, 13 isolates from ticks (6 from Ixodes tanuki, 6 from Ixodes turdus, and 1 from Ixodes columnae) and 3 isolates from voles (Clethrionomys rufocanus) were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, rRNA gene restriction fragment length polymorphism, partial sequencing of the outer surface protein C (OspC) gene, whole DNA-DNA hybridization, and 16S rRNA gene sequence comparison. All of the results revealed that these Borrelia strains clearly represent at least two new species. A third is also likely, although additional strains have to be isolated and characterized before a separate species is designated. We designated all isolates of I. tanuki and C. rufocanus as group Hk501 and all isolates of I. turdus as group Ya501. Phylogenetic analysis based on 16S rRNA gene sequences distinguished these Borrelia strains from those belonging to hitherto known Borrelia species. Furthermore, the genomic groups, each with its own tick vectors with enzootic cycles, were quite different from each other and also from those of Lyme disease Borrelia species known to occur in Japan. The results of 16S rRNA gene sequence comparison suggest that the strain Am501 from I. columnae is related to group Hk501, although its level of DNA relatedness is less than 70%.  相似文献   

12.
The rRNA gene restriction pattern sof 110 strains belonging to 12 staphylococcal species have been determined. The strains, isolated from various sources, were epidemiologically unrelated. Total DNA was cleaved with restriction enzymes HindIII and EcoRI, electrophoretically separated and probed with radiolabelled 16S rDNA from Bacillus subtilis inserted in a plasmid vector, pBR322. Fourty-four distinct HindIII patterns and 44 distinct EcoRI patterns were observed. Strains belonging to different species had different patterns. Although distinct patterns were also observed with some species, a core of common bands could be discerned within each species or subspecies. Analysis of the patterns revealed two taxa in Staphylococcus xylosus which were not evident using phenotypic characteristics. Of 18 strains which were difficult to identify using phenotypic schemes, 15 showed patterns typical of known species. The three remaining atypical strains showed unusual patterns and may belong either to a known species, not included in the study, or to a new species. Since various patterns were observed within some species (e.g.S.aureus and S. epidermidis), rRNA gene restriction patterns may have epidemiological, as well as taxonomic interest.  相似文献   

13.
AIMS: The present study describes a system based on PCR and restriction endonuclease analysis (REA) to distinguish the seven currently recognized Malassezia species. METHODS AND RESULTS: Fifty-five representative yeast isolates were examined. A single primer pair was designed to amplify the large subunit ribosomal RNA (LSU rRNA) gene of the seven Malassezia species, and identification was achieved by digestion of the PCR products with three restriction endonucleases: BanI, HaeII and MspI. A specific restriction endonuclease analysis pattern was determined for each species investigated. Moreover, PCR-REA allowed the detection and characterization of mixtures of several Malassezia species. CONCLUSION: PCR-REA of only the LSU rRNA gene is a reliable and rapid method to distinguish all Malassezia species. SIGNIFICANCE AND IMPACT OF THE STUDY: PCR-REA represents a considerable saving in time over currently available identification procedures. This method should be evaluated on clinical material directly.  相似文献   

14.
A total of 46 brewery and 15 ATCC Pediococcus isolates were ribotyped using a Qualicon RiboPrinter. Of these, 41 isolates were identified as Pediococcus damnosus using EcoRI digestion. Three ATCC reference strains had patterns similar to each other and matched 17 of the brewery isolates. Six other brewing isolates were similar to ATCC 25249. The other 18 P. damnosus brewery isolates had unique patterns. Of the remaining brewing isolates, one was identified as P. parvulus, two were identified as P. acidilactici, and two were identified as unique Pediococcus species. The use of alternate restriction endonucleases indicated that PstI and PvuII could further differentiate some strains having identical EcoRI profiles. An acid-resistant P. damnosus isolate could be distinguished from non-acid-resistant varieties of the same species using PstI instead of EcoRI. 16S rRNA gene sequence analysis was compared to riboprinting for identifying pediococci. The complete 16S rRNA gene was PCR amplified and sequenced from seven brewery isolates and three ATCC references with distinctive riboprint patterns. The 16S rRNA gene sequences from six different brewery P. damnosus isolates were homologous with a high degree of similarity to the GenBank reference strain but were identical to each other and one ATCC strain with the exception of 1 bp in one strain. A slime-producing, beer spoilage isolate had 16S rRNA gene sequence homology to the P. acidilactici reference strain, in agreement with the riboprint data. Although 16S rRNA gene sequencing correctly identified the genus and species of the test Pediococcus isolates, riboprinting proved to be a better method for subspecies differentiation.  相似文献   

15.
Observations have been made on the ribosomal RNA (rRNA) gene units of hybrid progeny produced by experimental crosses of S. haematobium × S. mattheei, S. mattheei × S. bovis and S. haematobium × S. intercalatum. Hybridisation of DNA probe pSM 889 to restriction endonuclease digested DNA extracted from adult worms showed that each parental form could be differentiated by differences in the rRNA gene unit. In each experimental cross the F1 hybrid generation produced a composite major banding pattern of the two parental species. No differences associated with the stage of development were detected in the major bands of hybridisation when DNA extracted from various life-cycle stages of S. mansoni and S. margrebowiei was digested with EcoR1 and hybridised with probe pSM 889. Prepatent infections of S. mansoni in Biomphalaria glabrata were detected 16 days post-infection utilising probe pSM 389 and dot blot analysis. Small numbers of intact cercariae dotted onto nitrocellulose were detected using probe pSM 389, 10 cercariae being the minimum number required for accurate determination.  相似文献   

16.
High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned. Ten unique sequences were obtained: one sequence each clustered with Bifidobacterium (Gram-positive eubacteria), Lactobacillus (Gram-positive eubacteria), and Gluconacetobacter (Gram-negative alpha-proteobacteria); two sequences each clustered with Simonsiella (beta-proteobacteria) and Serratia (gamma-proteobacteria); and three sequences each clustered with Bartonella (alpha-proteobacteria). Although the sequences relating to these six bacterial genera initially were obtained from either A. m. capensis or A. m. scutellata or both, newly designed honeybee-specific 16S rRNA primers subsequently amplified all sequences from all individual workers of both subspecies. Attempts to amplify these sequences from eggs have failed. However, the wsp primers designed to amplify Wolbachia DNA from arthropods, including these bees, consistently produced a 0.6-kb DNA band from individual eggs, indicating that amplifiable bacterial DNA was present. Hence, the 10 bacteria could have been acquired orally from workers or from other substrates. This screening of 16S rRNA sequences from A. m. capensis and A. m. scutellata found sequences related to Lactobacillus and Bifidobacterium which previously had been identified from other honeybee subspecies, as well as sequences related to Bartonella, Gluconacetobacter, Simonsiella/Neisseria, and Serratia, which have not been identified previously from honeybees.  相似文献   

17.
The genetic variability among 32 Chinese Acidithiobacillus spp. environmental isolates and four reference strains representing three recognized species of the genus Acidithiobacillus was characterized by using a combination of molecular methods, namely restriction fragment length polymorphisms of PCR-amplified 16S rRNA genes and 16S-23S rRNA gene intergenic spacers, repetitive element PCR, arbitrarily primed PCR and 16S rRNA gene sequence analyses. 16S rRNA gene sequences revealed that all Acidithiobacillus spp. strains could be assigned to seven groups, three of which encompassed the Acidithiobacillus ferrooxidans strains from various parts of the world. A comparative analysis of the phylogenetic Group 1 and 2 was undertaken. Restriction fragment length polymorphism results allowed us to separate the 35 Acidithiobacillus strains into 15 different genotypes. An integrated phenotypic and genotypic analysis indicated that the distribution of A. ferrooxidans strains among the physiological groups were in agreement with their distribution among the genomic groups, and that no clear correlation was found between the genetic polymorphism of the Acidithiobacillus spp. strains and either the geographic location or type of habitats from which the strains were isolated. In addition, five unidentified sulfur-oxidizing isolates may represent one or two novel species of the genus Acidithiobacillus. The results showed that the Chinese Acidithiobacillus spp. isolates exhibited a high degree of genomic and phenotypic heterogeneity.  相似文献   

18.
In the genus Aeromonas there are at least 13 DNA hybridization groups, which are difficult to differentiate biochemically. We investigated the usefulness of rRNA gene restriction patterns for characterization and identification of the various groups. Genomic DNA was digested with restriction endonuclease SmaI, transferred to a nylon membrane, and hybridized with biotinylated plasmid pKK3535 containing the rrnB operon of Escherichia coli. The SmaI bands at 0.8 to 4 kb but not those at positions corresponding to sizes larger than 4 kb showed a good correlation with hybridization groups, allowing identification of strains to the level of genetic species. We demonstrated that the 567-bp fragment localized between positions 80 and 647 of the 16S ribosomal gene of E. coli was essential for hybridization to the low-molecular-weight fragments, whereas the remainder of the operon did not hybridize to these fragments. On the basis of these results, we concluded that the Aeromonas chromosome contains multiple rRNA operons which may be used for species identification.  相似文献   

19.
J R Rawson  M T Clegg  K Thomas  C Rinehart  B Wood 《Gene》1981,16(1-3):11-19
The chloroplast rDNA genes of pearl millet (Pennisetum americanum) have been cloned and physically mapped. The chloroplast genome of the pearl millet contains two identical rRNA genes located on DNA sequences that are inverted with respect to one another and separated by 12 kb of single-copy DNA. The rRNA genes were positioned on a restriction endonuclease map by using as hybridization probes specific cloned rDNA sequences from the chloroplast DNA of the alga Euglena gracilis. The 16S and 23S rRNA genes were shown to be approx. 2 kb from one another, and the 5S RNA gene is immediately adjacent to the 23S tRNA gene.  相似文献   

20.
AIM: To avoid the limitations of 16S rRNA-based phylogenetic analysis for Paenibacillus species, the usefulness of the RNA polymerase beta-subunit encoding gene (rpoB) was investigated as an alternative to the 16S rRNA gene for taxonomic studies. METHODS AND RESULTS: Partial rpoB sequences were generated for the type strains of eight nitrogen-fixing Paenibacillus species. The presence of only one copy of rpoB in the genome of P. graminis strain RSA19(T) was demonstrated by denaturing gradient gel electrophoresis and hybridization assays. A comparative analysis of the sequences of the 16S rRNA and rpoB genes was performed and the eight species showed between 91.6-99.1% (16S rRNA) and 77.9-97.3% (rpoB) similarity, allowing a more accurate discrimination between the different species using the rpoB gene. Finally, 24 isolates from the rhizosphere of different cultivars of maize previously identified as Paenibacillus spp. were assigned correctly to one of the nitrogen-fixing species. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The data obtained in this study indicate that rpoB is a powerful identification tool, which can be used for the correct discrimination of the nitrogen-fixing species of agricultural and industrial importance within the genus Paenibacillus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号