首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new loci, prrB and prrC, involved in the positive regulation of photosynthesis gene expression in response to anaerobiosis, have been identified in Rhodobacter sphaeroides. prrB encodes a sensor histidine kinase that is responsive to the removal of oxygen and functions through the response regulator PrrA. Inactivation of prrB results in a substantial reduction of photosynthetic spectral complexes as well as in the inability of cells to grow photosynthetically at low to medium light intensities. Together, prrB and prrA provide the major signal involved in synthesis of the specialized intracytoplasmic membrane (ICM), harboring components essential to the light reactions of photosynthesis. Previously, J. K. Lee and S. Kaplan (J. Bacteriol. 174:1158-1171, 1992) identified a mutant which resulted in high-level expression of the puc operon, encoding the apoproteins giving rise to the B800-850 spectral complex, in the presence of oxygen as well as in the synthesis of the ICM under conditions of high oxygenation. This mutation is shown to reside in prrB, resulting in a leucine-to-proline change at position 78 in mutant PrrB (PRRB78). Measurements of mRNA levels in cells containing the prrB78 mutation support the idea that prrB is a global regulator of photosynthesis gene expression. Two additional mutants, PRRB1 and PRRB2, which make two truncated forms of the PrrB protein, possess substantially reduced amounts of spectral complexes. Although the precise role of prrC remains to be determined, evidence suggests that it too is involved in the regulatory cascade involving prrB and prrA. The genetic organization of the photosynthesis response regulatory (PRR) region is discussed.  相似文献   

2.
3.
A new gene, the product of which is involved in the regulation of photosynthesis gene expression in the anoxygenic photosynthetic bacterium Rhodobacter sphaeroides 2.4.1, has been identified. The isolation of this gene, designated appA (activation of photopigment and puc expression), was based on its ability, when provided in extra copies, to partially suppress mutations in the two-component PrrB-PrrA regulatory system. The presence of extra copies of the appA gene in either prrB, prrA, or wild-type strains resulted in an activation of puc::lacZ expression under aerobic conditions. Constructed AppA null mutants did not grow photosynthetically and were impaired in the synthesis of both bacteriochlorophyll and carotenoids, as well as the structural proteins of the photosynthetic spectral complexes. When grown anaerobically in the dark, these mutants accumulated bacteriochlorophyll precursors. The expression of lacZ fusions to several photosynthesis genes and operons, including puc, puf, and bchF, was decreased in the AppA mutant strains in comparison with the wild type. To examine the role of AppA involvement in bacteriochlorophyll biosynthesis, we inactivated an early gene, bchE, of the bacteriochlorophyll pathway in both wild-type and AppA- mutant backgrounds. The double mutant, AppA- BchE-, was found to be severely impaired in photosynthesis gene expression, similar to the AppA- BchE+ mutant and in contrast to the AppA+ BchE- mutant. This result indicated that AppA is more likely involved in the regulation of expression of the bch genes than in the biosynthetic pathway per se. The appA gene was sequenced and appears to encode a protein of 450 amino acids with no obvious homology to known proteins.  相似文献   

4.
5.
In Rhodobacter sphaeroides, the two cbb operons encoding duplicated Calvin-Benson Bassham (CBB) CO2 fixation reductive pentose phosphate cycle structural genes are differentially controlled. In attempts to define the molecular basis for the differential regulation, the effects of mutations in genes encoding a subunit of Cbb3 cytochrome oxidase, ccoP, and a global response regulator, prrA (regA), were characterized with respect to CO2 fixation (cbb) gene expression by using translational lac fusions to the R. sphaeroides cbb(I) and cbb(II) promoters. Inactivation of the ccoP gene resulted in derepression of both promoters during chemoheterotophic growth, where cbb expression is normally repressed; expression was also enhanced over normal levels during phototrophic growth. The prrA mutation effected reduced expression of cbb(I) and cbb(II) promoters during chemoheterotrophic growth, whereas intermediate levels of expression were observed in a double ccoP prrA mutant. PrrA and ccoP1 prrA strains cannot grow phototrophically, so it is impossible to examine cbb expression in these backgrounds under this growth mode. In this study, however, we found that PrrA mutants of R. sphaeroides were capable of chemoautotrophic growth, allowing, for the first time, an opportunity to directly examine the requirement of PrrA for cbb gene expression in vivo under growth conditions where the CBB cycle and CO2 fixation are required. Expression from the cbb(II) promoter was severely reduced in the PrrA mutants during chemoautotrophic growth, whereas cbb(I) expression was either unaffected or enhanced. Mutations in ccoQ had no effect on expression from either promoter. These observations suggest that the Prr signal transduction pathway is not always directly linked to Cbb3 cytochrome oxidase activity, at least with respect to cbb gene expression. In addition, lac fusions containing various lengths of the cbb(I) promoter demonstrated distinct sequences involved in positive regulation during photoautotrophic versus chemoautotrophic growth, suggesting that different regulatory proteins may be involved. In Rhodobacter capsulatus, ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) expression was not affected by cco mutations during photoheterotrophic growth, suggesting that differences exist in signal transduction pathways regulating cbb genes in the related organisms.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Expression of the puf and puc operons, which encode proteins of the photosynthetic apparatus of Rhodobacter capsulatus, is regulated by oxygen. A drop in the oxygen tension in the environment leads to an increase in the levels of puf and puc mRNAs. In strains lacking bacteriochlorophyll (Bchl) due to mutations in bch genes, the rise in puf and puc mRNA levels observed on reduction of oxygen tension is much less pronounced than in wild-type cells, indicating co-regulation of the syntheses of pigments and pigment-binding proteins. Here we show that Bchl synthesis also affects the expression of the bchC gene, which codes for a subunit of bacteriochlorophyll synthase, suggesting an autoregulatory mechanism for the Bchl biosynthetic pathway. Furthermore, our data provide evidence that the RegB/RegA two-component system, which is known to play a central role in oxygen-controlled expression of photosynthesis genes, is also involved in the Bchl-dependent regulation. Mutant strains which do not synthesize RegB or RegA show similar oxygen-dependent puf and puc expression in the presence and absence of Bchl. Our results support the view that the RegB/RegA system can directly or indirectly sense whether Bchl synthesis takes place or not.  相似文献   

13.
The AppA protein plays an essential regulatory role in development of the photosynthetic apparatus in the anoxygenic phototrophic bacterium Rhodobacter sphaeroides 2.4.1 (M. Gomelsky and S. Kaplan, J. Bacteriol. 177:4609-4618, 1995). To gain additional insight into both the role and site of action of AppA in the regulatory network governing photosynthesis gene expression, we investigated the relationships between AppA and other known regulators of photosynthesis gene expression. We determined that AppA is dispensable for development of the photosynthetic apparatus in a ppsR null background, where PpsR is an aerobic repressor of genes involved in photopigment biosynthesis and puc operon expression. Moreover, all suppressors of an appA null mutation thus far isolated, showing improved photosynthetic growth, were found to contain mutations in the ppsR gene. Because ppsR gene expression in R. sphaeroides 2.4.1 appears to be largely independent of growth conditions, we suggest that regulation of repressor activity occurs predominately at the protein level. We have also found that PpsR functions as a repressor not only under aerobic but under anaerobic photosynthetic conditions and thereby is involved in regulating the abundance of the light harvesting complex II, depending on light intensity. It seems likely therefore, that PpsR responds to an integral signal (e.g., changes in redox potential) produced either by changes in oxygen tension or light intensity. The profile of the isolated suppressor mutations in PpsR is in accord with this proposition. We propose that AppA may be involved in a redox-dependent modulation of PpsR repressor activity.  相似文献   

14.
The formation of photosynthetic complexes in facultatively photosynthetic bacteria is controlled by the oxygen tension in the environment. In Rhodobacter capsulatus the two-component system RegB/RegA plays a major role in the redox control of photosynthesis genes but also controls other redox-dependent systems. The response regulator RegA is phosphorylated under low oxygen tension and activates the puf and puc operons, which encode pigment binding proteins, by binding to their promoter regions. Data from a yeast two-hybrid analysis as well as an in vitroanalysis indicate that RegA interacts with the NtrX protein, the response regulator of the NtrY/NtrX two-component system which is believed to be involved in regulation of nitrogen fixation genes. Our further analysis revealed that NtrX is indeed involved in the regulation of the puf and puc operons. Furthermore, we showed that an altered NtrX protein, which is predicted to adopt the conformation of phosphorylated NtrX protein, binds within the puf promoter region close to the RegA binding sites. We conclude that a direct interaction of two response regulators connects the regulatory systems for redox control and nitrogen control.  相似文献   

15.
16.
Redox signaling: globalization of gene expression   总被引:10,自引:0,他引:10       下载免费PDF全文
Oh JI  Kaplan S 《The EMBO journal》2000,19(16):4237-4247
  相似文献   

17.
Anoxygenic photosynthetic proteobacteria exhibit various light responses, including changing levels of expression of photosynthesis genes. However, the underlying mechanisms are largely unknown. We show that expression of the puf and puc operons encoding structural proteins of the photosynthetic complexes is strongly repressed by blue light under semi-aerobic growth in Rhodobacter sphaeroides but not in the related species Rhodobacter capsulatus. At very low oxygen tension, puf and puc expression is independent of blue light in both species. Photosynthetic electron transport does not mediate the blue light repression, implying the existence of specific photoreceptors. Here, we show that the flavoprotein AppA is likely to act as the photoreceptor for blue light-dependent repression during continuous illumination. The FAD cofactor of AppA is essential for the blue light-dependent sensory transduction of this response. AppA, which is present in R. sphaeroides but not in R. capsulatus, is known to participate in the redox-dependent control of photosynthesis gene expression. Thus, AppA is the first example of a protein with dual sensing capabilities that integrates both redox and light signals.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号