首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maxadilan, a PAC1 receptor agonist from sand flies   总被引:2,自引:1,他引:1  
Lerner EA  Iuga AO  Reddy VB 《Peptides》2007,28(9):1651-1654
In 1991, a potent 61 amino acid vasodilator peptide, named maxadilan, was isolated from the salivary glands of the sand fly. Subsequently, it was shown that this peptide specifically and potently activated the mammalian PAC1 receptor, one of the three receptors for PACAP. These studies and the link between maxadilan and leishmaniasis are discussed.  相似文献   

2.
Maxadilan is a potent vasodilator peptide released into the skin when the sand fly Lutzomyia longipalpis, an important vector of leishmania, probes for a blood meal. As several lines of evidence suggest that this peptide may play a critical role in the enhancement of leishmania infectivity attributed to sand fly saliva, the peptide has been proposed as a candidate antigen for a leishmanial vaccine. Although maxadilan is the most potent vasodilator peptide known and shares several properties with calcitonin gene-related peptide (CGRP), studies of its structure, physiological effects, and biological roles have been limited by the miniscule quantities available. Here we report the isolation of cDNA and genomic DNA clones that encode maxadilan. The predicted translation product shows no significant homology with any previously isolated proteins. The coding DNA has been expressed in Escherichia coli and the purified recombinant peptide is biologically active with a specific activity comparable to the natural peptide. Recombinant maxadilan will be useful in studies of vascular biology and could lead to novel therapeutic and prophylactic agents.  相似文献   

3.
Maxadilan is a potent vasodilator peptide isolated from salivary glands of the blood feeding sand fly Lutzomyia longipalpis. The peptide relaxes rabbit aortic rings in an endothelium independent manner while elevating levels of cAMP and has been found to bind to membrane homogenates from brain. These studies on tissues have now been expanded with an examination of binding and signaling of maxadilan to a number of established cell lines and primary cultures. The data reveal that maxadilan binds to and stimulates the accumulation of cAMP in the rat pheochromocytoma line PC12 and the human neuroblastoma line NBfl. Accumulation of cAMP occurred in a transformed mouse pancreatic smooth muscle line (MILE) and primary rabbit aorta smooth muscle cells. The peptide did not bind to or induce cAMP formation in the rat thoracic aorta line L6. Scatchard analysis of binding to the PC12 and NBfl lines indicates that maxadilan binds to a single class of high-affinity receptors. Similar pharmacologic actions and possible structural homologies between maxadilan and calcitonin generelated peptide (CGRP) suggested the possibility that they shared receptors. However, competition studies and comparative second messenger analysis reveal that maxadilan does not interact with receptors for CGRP, amylin or adrenomedullin and suggest that this peptide may bind to a novel receptor whose endogenous ligand remains unknown.  相似文献   

4.
Adenosine and AMP in the salivary glands of the sand fly Phlebotomus argentipes were characterized by reversed-phase high-pressure liquid chromatography with diode-array detection and mass spectrometry. AMP and adenosine were measured in individual salivary gland pairs, yielding 76.8 +/- 8.6 and 380 +/- 25 pmoles per pair of salivary glands, respectively (mean +/- SE, n = 12). These values decrease to 45 +/- 7 and 181 +/- 21 pmoles following a blood meal, indicating that AMP and adenosine were secreted. Because adenosine and AMP have anti-platelet, vasodilatory, and immunomodulatory properties, it is proposed that these salivary nucleotides help the fly to blood feed and may affect Leishmania transmission.  相似文献   

5.
6.
A thorough understanding of the transmission mechanism of any infectious agent is crucial to implementing an effective intervention strategy. Here, our current understanding of the mechanisms that Leishmania parasites use to ensure their transmission from sand fly vectors by bite is reviewed. The most important mechanism is the creation of a "blocked fly" resulting from the secretion of promastigote secretory gel (PSG) by the parasites in the anterior midgut. This forces the sand fly to regurgitate PSG before it can bloodfeed, thereby depositing both PSG and infective metacyclic promastigotes in the skin of a mammalian host. Other possible factors in transmission are considered: damage to the stomodeal valve; occurrence of parasites in the salivary glands; and excretion of parasites from the anus of infected sand flies. Differences in the transmission mechanisms employed by parasites in the three subgenera, Leishmania, Viannia and Sauroleishmania are also addressed.  相似文献   

7.
Both male and female adult stages of the sand fly Lutzomyia longipalpis have detectable amylase activity in their salivary glands, as indicated by formation of p-nitrophenyl-alpha-D-maltoside from p-nitrophenyl-alpha-D-octoside and by hydrolysis of 4-nitrophenyl-alpha-D-maltoheptaoside-4,6,-O-ethylidene. No salivary alpha-glucosidase was detected. Amylase activity was also found in the crop and midgut of female flies, although in a smaller amount. Salivary amylase is significantly reduced from the salivary glands immediately after a blood meal, as is the case with salivary alpha-glucosidases in mosquitoes. Presence of salivary gland amylase in these sand flies, and absence of salivary alpha-glucosidase, indicates that in nature these insects may have a significant intake of carbohydrates in the form of starch, as suggested by their plant-feeding behavior, previously demonstrated by Schlein and Warburg (Schlein, Y., Warburg, A., 1986. Phytophagy and the feeding cycle of Phlebotomus papatasi (Diptera: Psychodidae) under experimental conditions. Journal of Medical Entomology 23, 11-15), and Alexander and Usma (Alexander, B., Usma, M.C., 1994. Potential sources of sugar for the phlebotomine sandfly Lutzomyia youngi (Diptera: Psychodidae) in a Columbia coffee plantation. Ann. Trop. Med. Parasitol. 88, 543-549).  相似文献   

8.
9.
BackgroundPhlebotomine sand flies are vectors of Leishmania parasites. During blood feeding, sand flies deposit into the host skin immunogenic salivary proteins which elicit specific antibody responses. These anti-saliva antibodies enable an estimate of the host exposure to sand flies and, in leishmaniasis endemic areas, also the risk for Leishmania infections. However, the use of whole salivary gland homogenates as antigen has several limitations, and therefore, recombinant salivary proteins have been tested to replace them in antibody detection assays. In this study, we have used for the first time sand fly salivary recombinant proteins in a longitudinal field study on dogs.ConclusionsThese results suggest that P. perniciosus rSP03B protein is a valid alternative to whole saliva and could be used in large-scale serological studies. This novel method could be a practical and economically-sound tool to detect the host exposure to sand fly bites in CanL endemic areas.  相似文献   

10.
11.
Maxadilan, a 61-amino-acid vasodilatory peptide, was initially isolated from the salivary glands of the sand fly Lutzomyia longipalpis. Although its primary sequence has no homology to that of pituitary adenylate cyclase-activating peptide, maxadilan is an agonist for the PAC1 receptor. A total of 58 substitution and deletion mutants was engineered in an effort to determine which residues were important for receptor activation. The mutants were characterized functionally using an assay based on pigment granule translocation in PAC1-expressing Xenopus laevis melanophores. Substitution of charged residues and proline 43 could alter (but not eliminate) the agonist activity of the mutants. In contrast, we found that several multiple substitution mutants of the predicted beta-strand threonine residues became antagonists at the PAC1 receptor. The results suggest that these threonine residues are cooperatively involved in PAC1 activation.  相似文献   

12.
Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-γ at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG2 antibody levels and significant IFN-γ production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-γ and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response.  相似文献   

13.
In the process of sequencing a subtracted cDNA library from the salivary glands of the sand fly Lutzomyia longipalpis, we identified a cDNA with similarities to gene products of the adenosine deaminase family. Prompted by this cDNA finding, we detected adenosine deaminase activity at levels of 1 U/mg protein in salivary gland homogenates. The activity was significantly reduced following a blood meal indicating its apparent secretory fate. The native enzyme has a K(m) of approximately 10 microM, an isoelectric pH between 4.5 and 5.5, and an apparent molecular weight of 52 kDa by size exclusion chromatography. The possible role of this enzyme, which converts adenosine to inosine, in the feeding physiology of L. longipalpis is discussed.  相似文献   

14.
The calpains are Ca(2+)-activated cysteine proteases whose biochemical properties have been extensively characterized in vitro. Less is known, however, about the physiological role of calpains. In this respect, Drosophila melanogaster is a useful experimental organism to study calpain activity and regulation in vivo. The sequencing of the fly genome has been recently completed and a novel calpain homologue has been identified in the CG3692 gene product. We embarked on the cloning and characterization of this putative novel calpain. We demonstrate that the actual calpain is different from the predicted protein and we provide experimental evidence for the correction of the genomic annotation. This novel protein, Calpain C, must be catalytically inactive, having mutated active site residues but is otherwise structurally similar to the other known fly calpains. Moreover, we analysed Calpain C RNA expression during Drosophila development by RT-PCR and RNA in situ hybridization, which revealed strong expression in the salivary glands.  相似文献   

15.

Background

Visceral Leishmaniasis is a serious human disease transmitted, in the New World, by Lutzomyia longipalpis sand flies. Natural resistance to Leishmania transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose.

Methodology/Principal Findings

BluePort is a well-vascularized and macrophage-rich compartment induced in the subcutaneous tissue of mice via injection of agarose beads covered with Cibacron blue. We describe the sequence of inflammatory events leading to its formation and how it can be used to study the dermal response to the bite of L. longipalpis sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures.

Conclusions/Significance

Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum.  相似文献   

16.
Sand fly saliva contains a rich array of pharmacologically active compounds whose primary function is to prevent the hemostatic mechanisms of the host. Several studies have ascribed immunosuppressive properties to sand fly saliva as well as an exacerbative effect on Leishmania infectivity for their mammalian hosts. This review provides a comprehensive account of sand fly salivary components, the immunomodulatory properties exhibited by some of its molecules, and describes the findings concerning the influence of saliva on Leishmania infections. The potential use of saliva as part of an anti-Leishmania vaccine for the mammalian host is also addressed.  相似文献   

17.
Thrombostasin (TS) is a thrombin inhibitor found in the salivary glands of horn flies (Haematobia irritans). It is produced as an inactive form with a 76-amino acid propeptide in the N-terminus preceding the mature TS. A minimal recognition sequence by subtilisin-like proprotein convertases, Arg-Xaa-Xaa-Arg, is localized C-terminal to the propeptide. This study demonstrated that a gene cloned from the salivary glands of the horn fly encodes a new convertase, subsequently named horn fly proprotein convertase (HFPC), and that the recombinant HFPC expressed in insect HighFive cell culture specifically cleaves recombinant pro-thrombostasin, produced in E. coli, at the expected site. The relative cleavage efficiency of rHFPC was compared with that of recombinant human furin, a commercially available proprotein convertase. The result indicated that this newly identified proprotein convertase is of importance for the proteolytic maturation of thrombostasin, a protein secreted in horn fly saliva and used by the insect to counteract its host's haemostatic response.  相似文献   

18.
19.
20.
An avidin-biotin immunocytochemical technique was used to localize cells containing an insulin- or glucagon-like peptide in the major salivary glands of Sprague-Dawley rats. Cells with insulin-like staining were observed in the intercalated ducts of both the parotid and submandibular glands, but none were found in the sublingual gland. A discrete population of cells with intense glucagon-like immunostaining was associated with the acini of all three major salivary glands. This immunostaining only followed use of a glucagon antiserum with N-terminal specificity and not after incubation of tissues with an anti-glucagon serum having C-terminal specificity. These results suggest that rat salivary glands may contain peptides potentially capable of influencing substrate metabolism. In addition, the present findings indicate that the glucagon-like peptide found in salivary glands has a greater immunocytochemical similarity to glicentin (gut-type glucagon) and/or glucagon precursors than to the 3500 molecular weight pancreatic glucagon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号