首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) were identified in the vegative mycelium of Streptomyces griseus. Adenosine 5'-diphosphate 3'-diphosphate (ppApp) and adenosine 5'-triphosphate 3'-diphosphate (pppApp) were not present but several other phosphorus-containing compounds which may have been inorganic polyphosphates were detected. During exponential growth of S. griseus the concentrations of ppGpp and pppGpp were several times higher than in the stationary stage. They fell sharply when exponential growth ended and then remained at an almost constant basal level. For the tetraphosphate the maximum concentration was about 50, and for the basal level about 10, pmol per millilitre of a culture with an optical density of 1.0. Production of streptomycin started several hours after exponential growth had ended and the concentrations of ppGpp and pppGpp had fallen. Streptomycin synthesis was delayed if the cells were resuspended just before production started in fresh medium lacking phosphate, but it was not delayed by glucose starvation. Both cultures, as well as cultures transferred to nitrogen-free medium, showed an immediate increase in ppGpp content to about four-fold the basal level. The results suggest that the guanosine polyphosphates do not directly control initiation of streptomycin production in S. griseus. Twelve additional species of Streptomyces examined all contained ppGpp and pppGpp.  相似文献   

2.
Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) is rapidly degraded to guanosine 5'-diphosphate (ppG) and probably pyrophosphate by an enzyme present in the ribosomal fraction prepared from spoT+ strains of Escherichia coli. The ppGpp-degrading enzyme was released from the ribosomes during dissociation at low ionic strength. Ribosomes are not essential for degradation of ppGpp, and decay of ppGpp is strictly dependent on manganese ions. The reaction is sensitive to inhibition by tetracycline, which can be reversed by MnCl2, indicating that the inhibitory effect is due to the previously described chelating properties of the antibiotic. When the ppGpp-degrading enzyme was complemented with adenosine 5'-triphosphate (pppA) and a nucleoside diphosphate kinase, decay of ppGpp was accelerated yielding pppG and ppG as major products. In the absence of pppA we have been unable to detect the ppGpp-degrading enzyme in various spoT- mutant strains indicating that this enzyme is the spoT gene product.  相似文献   

3.
Addition of divalent ion chelating agents picolinic acid, 1,10-phenanthroline, or quinoline-2-carboxylic acid to wild type, relA, or relX, but not spoT strains of Escherichia coli increases the levels of guanosine 5'-diphosphate 3'-diphosphate (ppGpp). Poorly chelating analogs of these agents and a larger and more highly charged chelating agent, ethylene glycol bis(beta-amino-ethyl ether) N,N,N',N'-tetraacetic acid are ineffective. Mn2+ reverses the increase in ppGpp. The increase in ppGpp in wild type cells can be explained by an inhibition of degradation. In spoT cells the response is more complex; ppGpp does not increase although degradation is completely inhibited. The lack of increase in spoT cells suggests a role for spoT in synthesis of ppGpp in addition to its known role in degradation. Growth of both spoT+ and spoT cells is inhibited following chelator addition. This suggests that growth inhibition is through a mechanism not directly involving ppGpp. The results of this study provide evidence in intact cells for a role for Mn2+ and the spoT gene product in ppGpp degradation, and provide further evidence for an involvement of spoT and possibly divalent ions in ppGpp synthesis.  相似文献   

4.
The regulatory nucleotide guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and its precursor guanosine 5'-triphosphate, 3'-diphosphate (pppGpp) are accumulated during stringent response in bacterial cells. The enzyme pppGpp-5'-phosphohydrolase, which catalyzes the conversion of pppGpp to ppGpp, was partially purified from Escherichia coli. It has Mr = 140,000 and an apparent Km of 0.11 mM for pppGpp. It requires Mg2+ and a monovalent cation. NH4+ is preferred over K+, while Na+ is inactive. The enzyme does not hydrolyze GTP, ATP, pppApp, or ppGpp. It is also not effectively inhibited by these nucleotides. pppGpp-5'-phosphohydrolase hydrolyzes the 3'-monophosphate analog pppGp equally well (apparent Km of 0.13 mM), yielding the recently identified MS III nucleotide (ppGp). pppGpp-5'-phosphohydrolase does not have RNA 5'-terminal gamma-phosphatase activity; however, 5'-terminal phosphates are released by pppGpp-5'-phosphohydrolase when the GTP-terminated RNA chains are first converted into oligonucleotides by RNase A treatment. pppGpp-5'-phosphohydrolase was found to actively hydrolyze the dinucleotide fragment pppGpNp but exhibited very low activity toward longer chain fragments. The 3'-unphosphorylated dinucleotide pppGpN was, however, not hydrolyzed. The ability of pppGpp-5'-phosphohydrolase to hydrolyze pppGpp, pppGp, and pppGpNp, but not pppG and pppGpN, indicates that pppGpp-5'-phosphohydrolase is rather nonspecific toward the 3'-OH substitutions of the substrates although a free, unsubstituted phosphate group at the 3'-OH position is essential.  相似文献   

5.
The synthesis of ppGpp in spoT- mutants of Escherichia coli has been invesitgated. In these mutants the first-order rate constant for ppGpp breakdown is low, and pppGpp is barely detectable. It is shown that the rate of pppGpp, and hence ppGpp, synthesis is strongly reduced compared with that observed in spot+ strains. The low rate of magic spot synthesis satisfactorily explains the low levels of pppGpp in spoT- mutants. The pentaphosphate very probably is the precursor of ppGpp as it is in wild-type, i.e. spoT+, strains.  相似文献   

6.
Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) selectively reduces the synthesis of su+III tRNA from omega 80 psu+III DNA relative to the synthesis of omega 80 RNA in a system in vitro containing DNA and Escherichia coli RNA polymerase holoenzyme as the sole macromolecular components. The response of su+III tRNA synthesis to increasing salt and to temperature in the presence of ppGpp suggests that the nucleotide may reduce the affinity of the enzyme for su+III promoters. The Ki for the selective inhibition of tRNA synthesis by ppGpp is 4 muM in contrast to the value of 150 muM for the inhibition of rRNA synthesis.  相似文献   

7.
F'-episomes carrying the Salmonella typhimurium wild-type or attenuator-deleted histidine (his) operons were introduced into Escherichia coli strains containing relA or spoT single and double mutations known to affect guanosine 3'-diphosphate 5'-diphosphate (ppGpp) and guanosine 3'-triphosphate 5'-diphosphate (pppGpp) levels. Expression of the his operon and expression of the gene for 6-phosphogluconate dehydrogenase (gnd) were measured during balanced growth in amino acid-rich and minimal media. The data were consistent with the interpretation that ppGpp is a positive effector of his operon expression, whereas pppGpp is not an essential effector. The conclusion that his operon expression is maximally stimulated at a lower than maximum intracellular ppGpp concentration was further confirmed. Neither ppGpp nor pppGpp appeared to influence gnd gene expression. The metabolic regulation of the E. coli his operon was found to be similar to the ppGpp-meidated metabolic regulation of the S. typhimurium his operon.  相似文献   

8.
5a,6-Anhydrotetracycline was discovered to be unique among several tetracycline derivatives tested in its ability to inhibit RNA accumulation in vivo at low concentration (20 microgram/ml and less). In addition, in vivo protein, DNA, and guanosine 5'-diphosphate 3'-diphosphate (ppGpp) synthesis were completely inhibited by 20 microgram/ml 5a,6-anhydrotetracycline. ppGpp decay in a spoT strain was inhibited by 20 microgram/ml 5a,6-anhydrotef RNA synthesis by a 5a,6-anhydrotetracycline may be due, in part, to reduced UTP and CTP synthesis. The effects of tetracyclines on in vitro ppGpp synthesis by crude stringent factor in the absence of ribosomes were investigated. It was determined that of six tetracyclines tested, four strongly inhibited the reaction (oxytetracycline, chlorotetracycline, dedimethylaminotetracycline, and tetracycline) whereas 5a,6-anhydrotetracycline gave a moderate inhibition and alpha-6-deoxyoxytetracycline resulted in only a slight reduction in ppGpp synthesis. It is proposed that tetracyclines interfere with factors involved in ppGpp metabolism and function.  相似文献   

9.
The effect of polyamines on the in vitro and in vivo synthesis and degradation on guanosine 5'-diphosphate 3'-diphosphate (ppGpp) has been studied in Escherichia coli. The presence of 2 mM spermidine lowered the optimal Mg2+ concentration for ppGpp formation from 17 mM to 11 mM. The formation of ppGpp in the presence of 2 mM spermidine and 11 mM Mg2+ was about 15% greater than that in the presence of 17 mM Mg2+. At a concentration of less than 11 mM Mg2+, spermidine was found to stimulate ppGpp formation greatly. Putrescine did not cause any effect. When a polyamine-requiring mutant of E. coli (EWH319) was starved for an amino acid by the addition of valine, spermidine stimulated ppGpp formation. The degradation of ppGpp was not influenced significantly by polyamines.  相似文献   

10.
11.
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) were detected in formic acid extracts of air-exposed culutres of Bacteroides thetaiotaomicron. The identification of ppGpp and pppGpp in B. thetaiotaomicron was based on the following results: (i) cochromatography of 32P-labeled hyperphosphorylated nucleotides in two different two-dimensional solvent systems with authentic ppGpp and pppGpp; (ii) incorporation of [3H]guanosine into the putative ppGpp and pppGpp; (iii) alkaline lability; and (iv) resistance, to periodate oxidation. There was a marked increase in the concentration of ppGpp and pppGpp after shift from anaerobic to aerobic conditions, and accumulation of both ppGpp and pppGpp was blocked under these conditions by pretreatment of the culture with rifampin or tetracycline. Growth and incorporation of [3H]guanosine, [3H]tymidine, [14C]succinate, and L-[35S]methionine into macromolecules were inhibited immediately upon exposure to air. The accumulation of ppGpp and pppGpp in B. thetaiotaomicron upon exposure to air may represent a novel signal for synthesis of these compounds.  相似文献   

12.
In a wild-type strain (relA+) of Escherichia coli, starvation of amino acid led to an immediate cessation of the synthesis of stable ribonucleic acids, together with the accumulation of an unusual nucleotide, guanosine 5'-diphosphate 3'-diphosphate, commonly known as ppGpp. This compound also accumulated during heat shock. When temperature-sensitive protein synthesis elongation factor G (EF-G) was introduced into E. coli NF859, a relA+ strain, the synthesis of ppGpp was reduced to approximately one-half that of wild-type EF-G+ cells at a nonpermissive temperature of 40 degrees C. Furthermore, fusidic acid, an inhibitor of protein synthesis which specifically inactivates EF-G, prevented any accumulation of ppGpp during the heat shock. We suggest that a functional EF-G protein is necessary for ppGpp accumulation under temperature shift conditions, possibly by mediating changes in the function of another protein, the relA gene product. However, EF-G is probably not required for the synthesis of ppGpp during the stringent response, since its inactivation did not prevent ppGpp accumulation during amino acid starvation.  相似文献   

13.
Derepression of nitrogen fixation (nif) genes in Klebsiella pneumoniae following transfer from NH+4-sufficiency to N-free medium was preceded by rapid expansion of the guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool. When derepressed in N-free medium supplemented with glutamine (600 micrograms ml-1), expression from the nifH and nifL promoters, determined as beta-galactosidase activity in nif::lac merodiploid strains, was stimulated 7-fold and nitrogenase activity 26-fold; ppGpp did not accumulate, remaining at the levels found in NH+4-repressed populations. The relaxed mutant K. pneumoniae relA40, which accumulates only very low levels of ppGpp, showed partial derepression of nitrogenase activity in the presence of glutamine, thus ppGpp is unlikely to be an effector of nif expression. ATP and GTP levels were elevated under conditions where nif expression was enhanced, consistent with previous data suggesting that maintenance of ATP levels is a prerequisite for the expression of nif genes in K. pneumoniae.  相似文献   

14.
It was known previously that 1) the relA gene of Escherichia coli encodes an enzyme capable of guanosine 3',5'-bispyrophosphate (ppGpp) synthesis, 2) an uncharacterized source of ppGpp synthesis exists in relA null strains, and 3) cellular degradation of ppGpp is mainly due to a manganese-dependent ppGpp 3'-pyrophosphohydrolase encoded by the spoT gene. Here, the effects of spoT gene insertions and deletions are compared with analogous alterations in neighboring genes in the spo operon and found to be lethal in relA+ strains as well as slower growing in relAl backgrounds than delta relA hosts. Cells with null alleles in both the relA and spoT genes are found no longer to accumulate ppGpp after glucose exhaustion or after chelation of manganese ions by picolinic acid addition; the inability to form ppGpp is reversed by a minimal spoT gene on a multicopy plasmid. Strains apparently lacking ppGpp show a complex phenotype including auxotrophy for several amino acids and morphological alterations. We propose that the SpoT protein can either catalyze or control the alternative pathway of ppGpp synthesis in addition to its known role as a (p)ppGpp 3'-pyrophosphohydrolase. We favor the possibility that the SpoT protein is a bifunctional enzyme capable of catalyzing either ppGpp synthesis or degradation.  相似文献   

15.
A radioimmunoassay for guanosine-5'-diphosphate-3'-diphosphate (ppGpp) and adenosine-5'-triphosphate-3'-diphosphate (pppApp) has been developed. The assay method is based on competition of an unlabeled highly phosphorylated nucleotide with 3H-labeled highly phosphorylated nucleotide for binding sites on a specific antibody. Antibodies to ppGpp and pppApp were obtained by immunizing rabbits with the antigen prepared by conjugating ppGpp with human serum albumin using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and with the antigen prepared by conjugating 8-(6-aminohexyl)amino-adenosine-5'-triphosphate-3'-diphosphate with human serum albumin using glutaraldehyde, respectively. Antibody-bound 3H-labeled highly phosphorylated nucleotides were separated from the free 3H-labeled highly phosphorylated nucleotides by selective adsorption on dextran-coated charcoal. Displacement plots were linear over a concentration range of 5-1,000 pmol/assay tube in a log-probit percentage plot. Application of this method to biological systems offers improved accuracy and convenience compared with the previous 32PO4-labeling technique.  相似文献   

16.
The effects of a series of alcohols on the stringent response system of Escherichia coli were studied. The alcohols used could be divided into two groups on the basis of the response of pppGpp and ppGpp to the growth downshift induced by the alcohols. The cells responded to the alcohols, methanol, ethanol, and propanol, as if they were being starved of amino acids. In the stringent strain CP78 these alcohols induced pppGpp and ppGpp accumulation and curtailed RNA synthesis, whereas in the relaxed strain CP79, both of these responses were absent. It was determined that this response was most likely due to an interference by these alcohols with the uptake of amino acids required by these strains. By contrast both stringent and relaxed cells elevated their level of ppGpp and decreased RNA accumulation when treated with butanol or pentanol. This response is similar to the effect of carbon source limitation. It was determined that the elevation of ppGpp in the stringent strain was primarily the result of increased ppGpp synthesis in response to these alcohols. In the relaxed strain the rise in ppGpp was dependent on a decrease in ppGpp degradation coupled with a moderate increase in ppGpp synthesis. This stimulation of ppGpp synthesis in relaxed cells, although small, suggests the existence of an enzyme distinct from stringent factor which is capable of synthesizing ppGpp. Data are presented which suggest that the activity of this enzyme is coupled to the potential for protein synthesis and energy availability of the cell, perhaps being regulated by the overall ratio of unchanged to amino-acylated tRNA.  相似文献   

17.
Activation of ppGpp-3'-pyrophosphohydrolase by a supernatant factor and ATP   总被引:2,自引:0,他引:2  
The breakdown of guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) into GDP and PPi is catalyzed by a Mn2+-dependent 3'-pyrophosphohydrolase, the translation product of the spoT gene. The escherichia coli enzyme is normally found to be associated with the "crude" ribosome fraction. It is reported here that the guanosine 5'-diphosphate, 3'-diphosphate 3'-pyrophosphohydrolase activity in this fraction is activated by ATP in the presence of a relatively heat-stable, low molecular weight, supernatant factor (BS100). This stimulation is not due to a removal of reaction products such as by the phosphorylation of GDP to GTP or by the hydrolysis of PPi. Hydrolysis of ATP is probably required because neither adenosine 5'-(3-thio)triphosphate nor adenosine 5'-(beta, gamma-imido)triphosphate can substitute for ATP. Levallorphan, a morphine analog, which had been shown to inhibit in vivo ppGpp degradation, inhibits specifically the stimulation of ppGpp hydrolysis by ATP and the supernatant factor. The possible relationship of this system and the in vivo energy-dependent control of ppGpp degradation is discussed.  相似文献   

18.
Through the use of a new nucleotide extraction procedure, we had previously shown that relaxed mutants of Escherichia coli exhibit a unique response to amino acid starvation (Lagosky, P. A., and Chang, F. N. (1980) J. Bacteriol. 144, 499-508). The basal level amounts of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA and phenotypically relaxed relA+ rplK (relC) strains were shown to decrease at the onset of amino acid limitation and to remain severely depressed throughout the course of the starvation. Upon resupplementation of amino acid-starved relaxed mutants, the production of ppGpp resumes and results in the temporary overaccumulation of this nucleotide beyond its original basal level amount. We now show that the basal level ppGpp content of relaxed bacteria, as well as its subsequent fluctuations in response to amino acid starvation, is inversely correlated with the initial rates of RNA synthesis in these strains. The ability of ppGpp to control the rate of protein synthesis in relA mutants was also examined. It was observed that ppGpp had no apparent direct effect on the initial rates of protein synthesis in relA mutants. The constant inverse correlation which exists between ppGpp content in relA mutants, and their rates of RNa synthesis provide evidence which indicates that basal level ppGpp synthesis has definite physiological significance. It also suggests that the synthesis of basal level ppGpp might be an absolute requirement needed for normal bacterial growth.  相似文献   

19.
Both ribosomes and a cell-free extract (S-30) prepared from an Escherichia coli spoT mutant catalyzed the synthesis of guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) as efficiently as did ribosomes and S-30 from a spoT+ strain. In both cases, the level of pppGpp reached its maximum before ppGpp maximally accumulated. pppGpp added to the ribosome system was rapidly converted to ppGpp. These results indicate that the spoT+ gene product may not have a direct role in the synthesis of pppGpp and that pppGpp is a precursor of ppGpp.  相似文献   

20.
Amount of guanosine-5'-triphosphate, 3'-diphosphate (pppGpp) and guanosine-5'-diphosphate, 3'-diphosphate (ppGpp) in the cells of b. subtilis increased several times during starvation for lysine or after treatment with serine hydroxamate (analog of serine) or norvaline (analog of leucine), or in the presence of trimethoprim, which induced deficiency of methionine and leucine. In exponentially growing cells the concentration of pppGpp was found to be 10-20 pmol/A600. When serine hydroxamate or trimethoprim were added, concentration of pppGpp increased to 500-800 pmol/A600 and then slowly diminished. Elimination of lysine or addition to the culture medium of norvaline caused slight transitory accumulation of pppGpp (150 pmol/A600). The amount of another nucleotide ppGpp was always 2-3 times lower than one of pppGpp. Accumulation of (p)ppGpp in rel+ cells was accompanied by cessation of stable RNA synthesis. Under conditions described above rel- cells continued RNA synthesis and did not accumulate (p)ppGpp. In the rel+ cells treated with serine hydroxamate synthesis of stable RNA resumed and the amount of (p)ppGpp decreased after addition of serine or tetracycline and chloramphenicol. The half-life period for pppGpp in the presence of chloramphenicol was determined to be 30-40 seconds. Thus, during aminoacyl-tRNA deficiency rel+ cells of B. subtilis accumulate (p)ppGpp, which are believed to participate in negative regulation of RNA synthesis. Slight accumulation of pppGpp without concomitant inhibition of stable RNA synthesis was observed after treatment of growing cells with chloramphenicol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号