首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The goal of this study was to determine whether nisin and lactoferrin would act synergistically to inhibit the growth of Listeria monocytogenes and Escherichia coli O157:H7. METHODS AND RESULTS: Lactoferrin and nisin separately or in combination were suspended in peptone yeast glucose broth and following inoculation with L. monocytogenes or E. coli O157:H7 growth inhibition of each pathogen was determined. At 1000 microg ml(-1) lactoferrin L. monocytogenes was effectively inhibited. However, E. coli O157:H7 initially was inhibited and then grew to cell density similar to the control. A combination of 500 microg ml(-1) of lactoferrin and 250 IU ml(-1) of nisin effectively inhibited the growth of E. coli O157:H7, whereas, 250 microg ml(-1) of lactoferrin and 10 IU ml(-1) of nisin were inhibitory to L. monocytogenes. CONCLUSIONS: The results suggest that lactoferrin and nisin act synergistically to inhibit the growth of L. monocytogenes and E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: Natural preservatives that are active against gram-positive and gram-negative pathogens are desirable to the food industry and consumers. This study demonstrates that lactoferrin and nisin work synergistically reducing the levels required independently inhibiting growth of two major foodborne pathogens. Previous reported results indicated a low level of antimicrobial activity; however, this work was not performed in low divalent cation concentration media. It has been suggested that nondivalent cation-limiting medium such as trypticase soy broth (TSB), can reduce or completely eliminate the inhibitory activity. Further knowledge of these interactions can increase the understanding of the antimicrobial activity of lactoferrin. This should make the use of these compounds by industry more attractive.  相似文献   

2.
The effects of nisin and ALTA 2341 on the growth of Listeria monocytogenes were assessed on smoked salmon packaged under vacuum or 100% CO2. Smoked salmon slices (pH 6.3) were inoculated with a cocktail of seven L. monocytogenes isolates at a level of approximately 2.5 log10 colony forming units (cfu) g-1. After inoculation, the surface of the smoked salmon slices was treated with either nisin (400 or 1250 IU g-1) or ALTA 2341 (0.1 or 1%). The smoked salmon was packaged and stored at 4 degrees C (28 d) or 10 degrees C (9 d). On untreated vacuum-packaged smoked salmon, L. monocytogenes grew by 3.8 log10 cfu g-1 at 4 degrees C and 5.1 log10 cfu g-1 at 10 degrees C. Growth was reduced on nisin- and ALTA 2341-treated vacuum-packaged smoked salmon. On the nisin-treated samples, L. monocytogenes increased by 2.5 (400 IU g-1) and 1.5 (1250 IU g-1) log10 cfu g-1 at 4 degrees C, and by 4.3 (400 IU g-1) and 2.7 (1250 IU g-1) log10 cfu g-1 at 10 degrees C. With the ALTA 2341-treated samples, L. monocytogenes increased by 2.8 (0.1%) or 1.6 (1.0%) log10 cfu g-1 at 4 degrees C, and 3.3 (0.1%) or 3.6 (1.0%) log10 cfu g-1 at 10 degrees C. The growth of L. monocytogenes was retarded by packaging the smoked salmon in 100% CO2. On untreated smoked salmon, only a 0.8 log10 cycle increase was observed at 10 degrees C. Under all the other conditions tested with 100% CO2, L. monocytogenes was detected but growth was prevented.  相似文献   

3.
AIMS: The fate of Listeria monocytogenes Scott A, was studied in broth, at different a(w)s (by adding NaCl or KCl from 0.0 to 1.4 mol l(-1)), pHs (from 4.0 to 7.3 by adding lactic acid), and nisin concentrations (from 0 to 100 IU ml(-1)). METHODS AND RESULTS: Increasing salt and nisin concentrations and decreasing pH resulted in lower growth rates and extended lag phases. At pH 4.5 no growth was observed while in presence of nisin and/or 1 mol l(-1) salts of both kinds, L. monocytogenes Scott A was inactivated. Equal-molar concentrations of NaCl or KCl (similar a(w)), exerted similar effects against L. monocytogenes in terms of lag phase duration, growth or death rate. The growth boundaries of L. monocytogenes Scott A at 5 degrees C were also estimated by growth/no growth turbidity data, modeled by logistic polynomial regression. The concordance of logistic models, were 99.6 and 99.8% for NaCl and KCl, respectively. CONCLUSIONS: The growth interfaces derived by both NaCl and KCl models were almost identical. Hence, NaCl can be replaced by KCl without risking the microbiological safety of the product. Increasing nisin concentrations markedly affected the interface resulting in a more inhibitory environment for L. monocytogenes Scott A. Low to medium salt concentrations (0.3-0.7 mol l(-1) of either NaCl or KCl) provided a protective effect against inhibition of L. monocytogenes Scott A by nisin. SIGNIFICANCE AND IMPACT OF THE STUDY: Modelling the growth boundaries not only contributes to the development of safer food by providing useful data, but can also be used to study interactions between factors affecting initiation of growth of pathogenic micro-organisms.  相似文献   

4.
AIMS: To investigate the presence of viable but non-culturable Listeria monocytogenes during survival on parsley leaves under low relative humidity (RH) and to evaluate the ability of L. monocytogenes to recover from VBNC to culturable state under satured humidity. METHODS AND RESULTS: Under low RH (47-69%) on parsley leaves, the initial number of L. monocytogenes populations counted on non selective media (10(9) L. monocytogenes per leaf on TSA) was reduced by 6 log10 scales in 15 days, whereas number of viable L. monocytogenes counted under the microscope was reduced by 3-4 log10 scales, indicating the presence of VBNC cells. This was demonstrated on three L. monocytogenes strains (EGDe, Bug 1995 and LmP60). Changing from low to 100% RH permitted an increase of the culturable counts of L. monocytogenes and this growth was observed only when residual culturable cells were present. Moreover, VBNC L. monocytogenes inoculated on parsley leaves did not become culturable after incubation under 100% RH. CONCLUSIONS: Dry conditions induced VBNC L. monocytogenes on parsley leaves but these VBNC were likely unable to recover culturability after transfer to satured humidity. SIGNIFICANCE AND IMPACT OF STUDY: Enumeration on culture media presumably under-estimates the number of viable L. monocytogenes on fresh produce after exposure to low RH.  相似文献   

5.
Aims: To investigate the effects of nisin on lactobacilli contamination of yeast during ethanol fermentation and to determine the appropriate concentration required to control the growth of selected lactobacilli in a YP/glucose media fermentation model. Methods and Results: The lowest concentration of nisin tested (5 IU ml?1) effectively controlled the contamination of YP/glucose media with 106 CFU ml?1 lactobacilli. Lactic acid yield decreased from 5·0 to 2·0 g l?1 and potential ethanol yield losses owing to the growth and metabolism of Lactobacillus plantarum and Lactobacillus brevis were reduced by 11 and 7·8%, respectively. Approximately, equal concentrations of lactic acid were produced by Lact. plantarum and Lact. brevis in the presence of 5 and 2 IU ml?1 nisin, respectively, thus demonstrating the relatively higher nisin sensitivity of Lact. brevis for the strains in this study. No differences were observed in the final ethanol concentrations produced by yeast in the absence of bacteria at any of the nisin concentrations tested. Conclusions: Metabolism of contaminating bacteria was reduced in the presence of 5 IU ml?1 nisin, resulting in reduced lactic acid production and increased ethanol production by the yeast. Significance and Impact of the Study: Bacteriocins represent an alternative to the use of antibiotics for the control of bacterial contamination in fuel ethanol plants and may be important in preventing the emergence of antibiotic‐resistant contaminating strains.  相似文献   

6.
AIMS: To investigate the induction of the acid tolerance response (ATR) in Listeria monocytogenes and to assess the persistence of the pathogen in broth fermented using a nisin-producing starter culture. METHODS AND RESULTS: Lactic, acetic and hydrochloric acids were used to induce the ATR in L. monocytogenes growing at early exponential phase. Cells were then challenged in medium acidified to pH 3.5 with the same acid. Only lactic acid induced a detectable ATR. ATR+ cells maintained their initial numbers after 1 h exposure while ATR- were reduced by c. 4 log10 CFU. ATR+ or ATR- cells were also inoculated in M17G broth fermented with nisin-producing (nis+) or control (nis-) Lactococcus lactis. When exposed to nisin, the numbers of ATR+ cells were c. 2 log10 CFU higher than non detectable ATR- cells at day 3. In the absence of nisin (nis- culture), L. monocytogenes was recovered from all ATR+ and ATR- samples after 30 days. In contrast, no L. monocytogenes were recovered from any nis+ATR- samples but four of five nis+ATR+ samples were positive for L. monocytogenes after 30 days. CONCLUSIONS: The ATR confers cross-resistance to nisin for at least 30 days in a system fermented by nisin-producing bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: The cross-resistance induced by the ATR should be considered for the safety of foods fermented with bacteriocin-producing cultures.  相似文献   

7.
Edible films of gelatin and corn zein were prepared by incorporating nisin to the film-forming solutions. Corn zein film with nisin of 12,000 IU/ml had an increase of 11.6 MPa in tensile strength compared with the control, whereas gelatin film had a slight increase with the increase of nisin concentration added. Water vapor permeability for both corn zein and gelatin films decreased with the increase of nisin concentration, thus providing a better barrier against water. Antimicrobial activity against Listeria monocytogenes increased with the increase of nisin concentration, resulting in 1.4 log cycle reduction for corn zein film and 0.6 log cycle reduction for gelatin film at 12,000 IU/ml. These results suggest that incorporation of nisin into corn zein and gelatin films improve the physical properties of the films as well as antimicrobial activity against pathogenic bacteria during storage, resulting in extension of the shelf life of food products by providing with antimicrobial edible packaging films.  相似文献   

8.
M.A.S.S. FERREIRA AND B.M. LUND. 1996. The sensitivity to nisin of 27 strains of Listeria monocytogenes , four of L. innocua and one of L. ivanovii was estimated at pH 6.8 and pH 5.5. Strains of L. monocytogenes showed differences in sensitivity which were not correlated with serotype. Strains of L. innocua were as resistant as the most resistant strains of L. monocytogenes , whereas the strain of L. ivanovii was relatively sensitive. Two of the most resistant strains of L. monocytogenes multiplied in aerated liquid medium adjusted to pH 5.0 with HCl, incubated at 20°C; nisin, 500 IU ml-1, prevented multiplication and caused death. Following inoculation of a resistant strain into long-life cottage cheese, pH 4.6–4.7, the number of viable L. monocytogenes decreased approximately 10-fold during storage at 20°C for 7 d; addition of nisin, 2000 IU g-1, to the cottage cheese increased the rate of inactivation to approximately a 1000-fold decrease in 3 d.  相似文献   

9.
Gradient plates were used to investigate the effects of varying temperature, pH, and sodium chloride (NaCl) concentration on nisin inhibition of Staphylococcus aureus and Listeria monocytogenes, Nisin was incorporated into the plates of 0, 50, 100, 250, and 500 IU ml -1. Gradients of pH (3.7 to 7.92) at right angles to NaCl concentration (2.1 to 7% [wt/vol]) were used for the plates, which were incubated at 20, 25, 30 and 35 degrees C. Growth on the plates were recorded by eye and by image analysis. The presence of viable but nongrowing cells was revealed by transfer to nongradient plates. Lower temperatures and greater NaCl concentrations increased the nisin inhibition of S. aureus synergistically. Increasing the NaCl concentration potentiated the nisin action against L. monocytogenes; the effect of temperature difference was not so apparent. Between pH 7.92 and ca. pH 5, a fall pH appeared to increase nisin's effectiveness against both organisms. At more acid pH values (ca. pH 4.5 to 5), the organisms showed resistance to both nisin and NaCl at 20 and 25 degrees C. Similar results were obtained with one-dimensional liquid cultures.  相似文献   

10.
AIMS: To determine the ability of Listeria monocytogenes to survive exposure to commercial food-processing equipment cleaning solutions and subsequent treatment with sanitizers or heat. METHODS AND RESULTS: Cells of five strains of L. monocytogenes were suspended in 1% solutions of eight commercial cleaners (pH 7.1-12.5) or in water (control) and incubated at 4 degrees C for 30 min or 48 h before populations were determined by plating on tryptose phosphate agar. After exposure of cells to cleaning solutions for 30 min, populations of the most resistant strain of L. monocytogenes were reduced by < or = 1.63 log10 cfu ml(-1). In only three highly alkaline cleaning solutions (pH 11.6-12.4) were populations reduced significantly (P < or = 0.05) compared with reductions in water. After 48 h, populations were significantly higher in one cleaning solution (pH 10.4) than in water, while populations in six of the other seven cleaning solutions were reduced by > or = 4.72 log10 cfu ml(-1). Cells exposed to cleaning solutions for 30 min became sensitive to 4.0 or 6.0 mg l(-1) free chlorine and to 50 or 100 mg l(-1) benzalkonium chloride and cetylpyridinium chloride, common components of quaternary ammonium sanitizers. Cells exposed to four of the five test cleaners had D56 degrees C values less than or equal to those of the control cells. CONCLUSIONS: Listeria monocytogenes tolerates exposure to a high concentration of alkaline cleaning solutions but consequently becomes sensitized to sanitizers. SIGNIFICANCE AND IMPACT OF THE STUDY: The elimination of L. monocytogenes surviving exposure to alkaline cleaning solutions widely used for food-processing equipment is essential and the appropriate use of sanitizers for subsequent application to equipment is important in achieving this goal.  相似文献   

11.
AIMS: The study aimed to investigate the survival characteristics of Escherichia coli O157:H7 in farm water (FW), and in sterile distilled municipal water (SDW), stored outdoors under field conditions, with or without the addition of faeces (1% w/v), in a farmyard shed and the laboratory at 15 degrees C. METHODS AND RESULTS: Water samples were inoculated with E. coli O157:H7 at 10(3) and 10(6) ml(-1), and sampled over a 31-day period. In FW stored outdoors in a field, E. coli O157:H7 survived for 14 days at temperatures <15 degrees C, at both inoculation levels, while in the laboratory at 15 degrees C, the organism was still detectable at low levels (<1 log10 cfu ml(-1)) after 31 days. The addition of bovine faeces to water outdoors (1% w/v) resulted in survival for 24 days. In SDW inoculated at 10(6) ml(-1) and stored in the laboratory (15 degrees C), only a 2.5 log reduction was observed after 31 days, while the organism could not be detected after 17 days in the field. Preliminary screening of water samples stored outdoors isolated a bacterium which exhibited antimicrobial activity towards E. coli O157:H7. CONCLUSIONS: The survival of E. coli O157:H7 observed in this study illustrates the potential of farm water to act as a vehicle in the transfer of the organism across a herd. SIGNIFICANCE AND IMPACT OF THE STUDY: The difficulty in extrapolating results from controlled laboratory situations to on-farm conditions is also highlighted in this study.  相似文献   

12.
AIM: Use of a bacteriocin-producing lactococcal strain to control Listeria monocytogenes in jben. METHODS AND RESULTS: A Lactococcus lactis strain isolated from lben was shown, by the spot technique, to produce a bacteriocin different from nisin. Inhibitory activity of the bacteriocin-producing strain against Listeria monocytogenes was investigated in jben, made from cow's milk fermented with the producer organism and contaminated with 104 or 107 cfu ml-1. Listeria counts were monitored during manufacture, and during conservation at room and at refrigeration temperatures. Results showed that the pathogen was reduced by 2.7 logarithmic units after 30 h of jben processing when the initial inoculum of 107 cfu ml(-1) was used. For the initial inoculum of 104 cfu ml(-1), the bacterium was completely eliminated at 24 h. Furthermore, the use of the bacteriocin-producing starter culture extended the shelf-life of jben by 5 days. CONCLUSIONS: In situ production of the lactococcal bacteriocin is an efficient biological means of controlling L. monocytogenes in jben and of allowing shelf-life extension. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed technology will essentially benefit minimally processed dairy products and those made with raw milk.  相似文献   

13.
AIMS: To develop new measures for controlling both spoilage and pathogenic micro-organisms in unpasteurized apple juice using chitosan. METHODS AND RESULTS: Micro-organisms were isolated and identified from apple juice treated or untreated with chitosan using enrichment, selective media, microscopy, substrate assimilation patterns and ribosomal DNA profiling. Chitosan (0.05-0.1%) delayed spoilage by yeasts at 25 degrees C for up to 12 days but the effect was species specific: Kloeckera apiculata and Metschnikowia pulcherrima were inactivated but Saccharomyces cerevisiae and Pichia spp. multiplied slowly. In challenge experiments at 25 degrees C, total yeast counts were 3-5 log CFU ml(-1) lower in chitosan-treated juices than in the controls for 4 days but the survival of Escherichia coli O157:H7 was extended from 1 to 2 days; at 4 degrees C, chitosan reduced the yeast counts by 2-3 log CFU ml(-1) for up to 10 days but survival of the pathogen was prolonged from 3 to 5 days. The survival of Salmonella enterica serovar Typhimurium was unaffected by chitosan at either temperature. CONCLUSIONS: The addition of chitosan to apple juice delayed spoilage by yeasts but enhanced the survival of E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the use of chitosan in the treatment of fruit juices may potentially lead to an increased risk of food poisoning from E. coli O157:H7.  相似文献   

14.
AIMS: The following polymers were developed: polyethylene (PE), a PE and polyethylene oxide (70% PE and 30% PEO; PE + PEO) blend, PE and nisin (PE + nisin), PE, nisin, and EDTA (PE + nisin + EDTA), and PE + PEO with nisin (PE + PEO + nisin). METHODS AND RESULTS: Of the polymers tested, PE and PE + PEO did not exhibit any antimicrobial activity against Brochothrix thermosphacta (BT); however, PE + nisin, PE + nisin + EDTA, and PE + PEO + nisin did. Beef surfaces were experimentally inoculated with 3.50 log10 cfu/cm2 of BT, vacuum packaged with each of the five polymers, and held at 4 degrees C for 21 d. After 3 d at 4 degrees C, BT was reduced > 1.70 log(10) by PE + nisin and > 3.50 log(10) with PE + nisin + EDTA or PE + PEO + nisin. By 21 d at 4 degrees C, BT was reduced to 0.30 log(10) cfu/cm(2) when treated with PE + PEO + nisin. CONCLUSION: It appears that PE + PEO + nisin or PE + nisin + EDTA were more effective for reducing BT, as compared to polymers composed of PE + nisin. SIGNIFICANCE AND IMPACT OF THE STUDY: Nisin-incorporated polymers may control the growth of undesirable bacteria, thereby extending the shelf life and possibly enhancing the microbial safety of meats.  相似文献   

15.
The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 10(5) CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 10(6) CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10 degrees C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety.  相似文献   

16.
Nisin, a bacteriocin produced by some strains of Lactococcus lactis, acts against foodborne pathogen Listeria monocytogenes. A single exposure of cells to nisin can generate nisin-resistant (Nisr) mutants, which may compromise the use of nisin in the food industry. The objective of this research was to compare the heat resistance of Nisr and wild type (WT) Listeria monocytogenes. The synergistic effect of heat-treatment (55 degrees C) and nisin (500 IU ml-1) on the Nisr cells and the WT L. monocytogenes Scott A was also studied. When the cells were grown in the absence of nisin, there was no significant (alpha = 0.05) difference in heat resistance between WT and Nisr cells of L. monocytogenes at 55, 60 and 65 degrees C. However, when the Nisr cells were grown in the presence of nisin, they were more sensitive to heat at 55 degrees C than the WT cells. The D-values at 55 degrees C were 2.88 and 2.77 min for Nisr ATCC 700301 and ATCC 700302, respectively, which was significantly (alpha = 0.05) lower than the D-value for WT, 3.72 min. When Nisr cells were subjected to a combined treatment of heat and nisin, there was approximately a four log reduction during the first 7 min of treatment.  相似文献   

17.
AIMS: To isolate and characterize the alcohol-surviving covert bacterium associated with grape tissue culture. METHODS AND RESULTS: Single colony was isolated by plating the spent rectified spirit used during grape culturing and the organism was identified as Bacillus pumilus using partial 16S rDNA sequence data. Spotting tests (1 microl) using 3-day-old broth culture having a spore content of 20-30% showed similar bacterial survival in 25-90% (v/v) aqueous ethanol for 14 days. Survival in 90% ethanol and 90% rectified spirit appeared affected thereafter with no colony growth from 1 microl samples after 4 months. Plating the samples at this stage gave similar CFU ml(-1) for 25, 50 and 70% ethanol, a significant reduction in 80% ethanol and very few colonies in 90% ethanol and rectified spirit. B. pumilus-inoculated grape microcuttings showed substantial endophytic colonization of original cuttings (7.4 x 10(6) CFU g(-1)) followed by the sprout (5.9 x 10(5)) and roots (2.0 x 10(4)). The bacterium although a poor root colonizer, induced early rooting and more roots in vitro. Inoculation at ex vitro planting resulted in significantly more roots, root weight and shoot growth. CONCLUSIONS: Bacillus pumilus could remain as a covert endophyte in grape tissue cultures and survive in aqueous ethanol for extended periods. 90% ethanol was the most effective bactericidal concentration. The bacterium showed endophytic colonization and root and shoot growth promotion. SIGNIFICANCE AND IMPACT OF THE STUDY: The revelation that general recommendation of 70-80% ethanol may not be the most effective bactericidal concentration for all bacteria, elucidation of the possibility of covert bacterial survival in vitro plant cultures and isolation of a potential plant growth promoting endophyte in grape.  相似文献   

18.
The fresh-cut produce industry has been the fastest-growing portion of the food retail market during the past 10 years, providing consumers with convenient and nutritious food. However, fresh-cut fruits and vegetables raise food safety concerns, because exposed tissue may be colonized more easily by pathogenic bacteria than intact produce. This is due to the higher availability of nutrients on cut surfaces and the greater potential for contamination because of the increased amount of handling. We found that applied Listeria monocytogenes populations survived and increased only slightly on fresh-cut Red Delicious apples stored at 10 degrees C but increased significantly on fresh-cut honeydew melons stored at 10 degrees C over 7 days. In addition, we examined the effect of lytic, L. monocytogenes-specific phages via two phage application methods, spraying and pipetting, on L. monocytogenes populations in artificially contaminated fresh-cut melons and apples. The phage mixture reduced L. monocytogenes populations by 2.0 to 4.6 log units over the control on honeydew melons. On apples, the reduction was below 0.4 log units. In combination with nisin (a bacteriocin), the phage mixture reduced L. monocytogenes populations by up to 5.7 log units on honeydew melon slices and by up to 2.3 log units on apple slices compared to the control. Nisin alone reduced L. monocytogenes populations by up to 3.2 log units on honeydew melon slices and by up to 2.0 log units on apple slices compared to the control. The phage titer was stable on melon slices, but declined rapidly on apple slices. The spray application of the phage and phage plus nisin reduced the bacterial numbers at least as much as the pipette application. The effectiveness of the phage treatment also depended on the initial concentration of L. monocytogenes.  相似文献   

19.
AIMS: To use bovicin HC5 to inhibit predominant bacteria isolated from spoiled mango pulp. METHODS AND RESULTS: Bovicin HC5 and nisin were added to brain heart infusion (BHI) medium (40-160 AU ml(-1)) or mango pulp (100 AU ml(-1)) and the growth of Bacillus cereus and Bacillus thuringiensis was monitored. Cultures treated with bovicin HC5 or nisin showed longer lag phases and grew slower in BHI medium. Bovicin HC5 and nisin were bactericidal and showed higher activity in mango pulp at acidic pH values. To determine the effect on spore germination and D values, mango pulp containing bovicin HC5 was inoculated with 10(6) and 10(9) spores per ml(-1), respectively, from each strain tested. Bovicin HC5 reduced the outgrowth of spores from B. cereus and B. thuringiensis, but thermal sensitivity was not affected. CONCLUSIONS: Bovicin HC5 was bactericidal against B. cereus and B. thuringiensis isolated from spoiled mango pulp. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacillus cereus and B. thuringiensis had not been previously isolated from spoiled mango pulp and bovicin HC5 has the potential to inhibit such bacteria in fruit pulps.  相似文献   

20.
An online removal of nisin by silicic acid coupled with a micro-filter module was proposed as an alternative to reduce detrimental effects caused by adsorption of nisin onto producer, enzymatic degradation by protease, and product inhibition during fermentation. In this study, silicic acid was successfully used to recover nisin from the fermentation broth of Lactococcus lactis subsp. lactis NIZO 22186. The effect of pH (at 6.8 and 3.0) during adsorption process and several eluents (deionized water, 20% ethanol, 1 M NaCl, and 1 M NaCl + 20% ethanol) for desorption were evaluated in a small batch scale. Higher nisin adsorption onto silicic acid was achieved when the adsorption was carried out at pH 6.8 (67% adsorption) than at pH 3.0 (54% adsorption). The maximum recovery was achieved (47% of nisin was harvested) when the adsorption was carried out at pH 6.8 and 1 M NaCl + 20% ethanol was used as an eluent for desorption. Most importantly, nisin production was significantly enhanced (7,445 IU/ml) when compared with the batch fermentation without the online recovery (1,897 IU/ml). This may possibly be attributed to preventing the loss of nisin due the detrimental effects and a higher biomass density achieved during online recovery process, which stimulated production of nisin during fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号