首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
1. The synthesis of dibutylchloromethyltin chloride, a new covalent inhibitor of the mitochondrial ATP synthase [oligomycin-sensitive ATPase (adenosine triphosphatase)] complex is described, together with a method for preparing dibutylchloro[(3)H]methyltin chloride. 2. Studies with the yeast mitochondrial oligomycin-sensitive ATPase complex show that dibutylchloromethyltin chloride inhibits both the membrane-bound enzyme and also the purified Triton X-100-dispersed preparation. 3. F(1)-ATPase is not inhibited even at 500nmol of dibutylchloromethyltin chloride/mg of protein, and the general inhibitory properties are similar to those of triethyltin, oligomycin and dicyclohexylcarbodi-imide, known energy-transfer inhibitors of oxidative phosphorylation. 4. Binding studies with yeast submitochondrial particles show that dibutylchloromethyltin chloride antagonizes the binding of triethyl[(113)Sn]tin, indicating that there is an interaction between the two inhibitor-binding sites. 5. Unlike triethyltin, inhibition by dibutylchloromethyltin chloride is due to a covalent interaction which titrates a component of the inner mitochondrial membrane present at a concentration of 8-9nmol/mg of protein. 6. All of the labelled component can be extracted with chloroform/methanol (2:1, v/v), and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the chloroform/methanol extract indicates that the labelled component has an apparent mol.wt. of 6000-8000. However, t.l.c. reveals the presence of only one labelled component which is lipophilic and non-protein and is distinct from the free inhibitor, mitochondrial phospholipids and the dicyclohexylcarbodi-imide-binding protein (subunit 9). 7. Inhibition of mitochondrial ATPase and oxidative phosphorylation is correlated with specific interaction with a non-protein lipophilic component of the mitochondrial inner membrane which is proposed to be a co-factor or intermediate of oxidative phosphorylation.  相似文献   

2.
Studies on restoration of membrane-bound adenosinetriphosphatase (ATP phosphohydrolase, EC 3.6.1.3) from Rhodospirillum rubrum show that the delta-subunit is capable of binding to the F1 factor or to the F0 moiety of the F0-F1 ATPase complex. This subunit is thus likely involved in linking the F0 and F1 factor. During solubilization of the oligomycin-sensitive F0-F1 ATPase complex with Triton X-100 the detergent becomes specifically associated with the lipophilic F0 part of the enzyme complex. Crossed immunoelectrophoresis, agglutination tests, and kinetic studies with anti-F1 ATPase antibodies reveal a reaction of immunological identity of membrane-bound ATPase, F0-F1 ATPase, and F1 ATPase.  相似文献   

3.
Ligand-binding studies with labelled triethyltin on yeast mitochondrial membranes showed the presence of high-affinity sites (KD = 0.6 micronM; 1.2 +/- 0.3 nmol/mg of protein) and low-affinity sites (KD less than 45 micronM; 70 +/- 20 nmol/mg of protein). The dissociation constant of the high-affinity site is in good agreement with the concentration of triethyltin required for inhibition of mitochondrial ATPase (adenosine triphosphatase) and oxidative phosphorylation. The high-affinity site is not competed for by oligomycin or venturicidin, indicating that triethyltin reacts at a different site from these inhibitors of oxidative phosphorylation. Fractionation of the mitochondrial membrane shows a specific association of the high-affinity sites with the ATP synthase complex. During purification of ATP synthase (oligomycin-sensitive ATPase) there is a 5-6-fold purification of oligomycin- and triethyltin-sensitive ATPase activity concomitant with a 7-9-fold increase in high-affinity triethyltin-binding sites. The purified yeast oligomycin-sensitive ATPase complex contains approximately six binding sites for triethyltin/mol of enzyme complex. It is concluded that specific triethyltin-binding sites are components of the ATP synthase complex, which accounts for the specific inhibition of ATPase and oxidative phosphorylation by triethyltin.  相似文献   

4.
Adenylyl imidodiphosphate (AMP-PNP), and analog of adenosine triphosphate (ATP), is a potent competitive inhibitor of mitochondrial ATPase activity. It inhibits both the soluble oligomycin-insensitive ATPase (Ki = 9.2 × 10?7 M) and the bound oligomycin-sensitive APTase (Ki = 1.3 × 10?6 M). ATPase activity of inside-out submitochondrial preparations are more sensitive to AMP-PNP in the presence of an uncoupler (Ki = 2.0 × 10?7 M). Mitochondrial ATP-dependent reactions (reversed electron transfer and potassium uptake) do not proceed if ATP is replaced with AMP-PNP; however, the analog does affect these systems. Oxidative phosphorylation of whole mitochondria and submitochondrial preparations were unaffected by AMP-PNP.  相似文献   

5.
The short preincubation of submitochondrial particles with low concentrations of ADP in the presence of Mg2+ results in a complete loss of their ATPase and inosine triphosphatase activities. Other nucleoside diphosphates (IDP and GDP) do not affect the ATPase activity. The ADP-inhibited ATPase can be activated in a time-dependent manner by treatment of submitochondrial particles with the enzyme converting ADP into ATP (phosphoenolpyruvate plus pyruvate kinase). The activaton is a first-order reaction with rate constant 0.2 min-1 at 25 degrees C. The rate constant of activation is increased in the presence of ATP up to 2 min-1, and this increase shows saturation kinetics with Km value equal to that for ATPase reaction itself (10(-4) M at 25 degrees C at pH 8.0). The experimental results obtained are consistent with the model where two alternative pathways of ADP dissociation from the inhibitory site of ATPase exist; one is spontaneous dissociation and the second is ATP-dependent dissociation through the formation of the ternary complex between ADP, the enzyme and ATP. ADP-induced inactivation and ATP-dependent activation of ATPase activity of submitochondrial particles is accompanied by the same directed change of their ability to catalyse the ATP-dependent reverse electron transport from succinate to NAD+. The possible implication of the model suggested is discussed in terms of functional role of the inhibitory high-affinity binding site for ADP in the mitochondrial ATPase.  相似文献   

6.
(1) Conditions are described wherein the yeast oligomycin-sensitive adenosine triphosphatase (ATPase) complex can be reconstituted together with phospholipids to yield extremely high rates of ATP-32Pj exchange. The vesicles so formed exhibit proton uptake upon addition of Mg2+-ATP and a relatively slow decay of the proton gradient. (2) The stimulation of ATP-32Pi exchange by valinomycin + K+ reported previously (Ryrie, I. J. (1975) Arch. Biochem. Biophys. 168, 704–711) is apparently not simply due to a diffusion potential. The findings suggest that an electroimpelled, valinomycin-dependent migration of K+ may occur together with the electrogenic movements of protons during ATP hydrolysis and synthesis to establish optimal energized conditions for ATP-32Pi exchange. (3) An artificial oxidative phosphorylation system in the reconstituted vesicles is described: [32P]ATP formation from ADP and 32Pi is shown to be linked with electron flow between external ascorbate and internal ferricyanide where a permeable proton carrier, such as phenazine methosulfate, is used to establish a proton gradient. That the yeast ATPase is capable of net ATP synthesis has also been demonstrated in a light-dependent reaction using ATPase proteoliposomes reconstituted together with bacteriorhodopsin.  相似文献   

7.
P D Wagner  R G Yount 《Biochemistry》1975,14(9):1900-1907
A site-specific analog of ATP, 6,6'-dithiobis (inosinyl imidodiphosphate (S2P-PNP), inactivates the ATPase activities of myosin's proteolytic fragments, heavy meromyosin (HMM) and subfragment one (SF1), by formation of mixed disulfides between the 6 position of the purine ring and certain key cysteines. The stoichiometry of the reaction was determined by quantitatively displacing the thiopurine nucleotides from the labeled enzymes with sodium[14-C]cyanide. The thiocyanatoenzyme formed regained 25 percent of the original activity showing that the cysteines modified were not essential for catalysis. The rate of uptake of label paralleled the rate of inactivation. HMM was completely inactivated when 4 mol of thiopurine nucleotide was bound. SF1 made by a papain digestion of myosin incorporarted 2 mol of thiopurine nucleotide when completely inactivated. Having adenylyl imidodiphosphate, areversible competitive inhibitor of myosin's ATPase, present during the inactivation of HMM by S2P-PNP demonstrated that only one cysteine per head needed to be blocked to inactivate the enzyme. Moreover, SF1 made by a trypsin digest of HMM was completely inactivated when only 1.1 mol of the thiopurine nucleotide bound again indicating that blocking only a single cysteine per head was sufficient to cause inactivation. This sulfhydryl is thought to be at an ATP binding site distinct from the ATPase site. The properties of this second ATP binding site are consistent with it being an ATP regulatory site.  相似文献   

8.
Kinetic evidence are presented for the existence of a high affinity inhibitory site for ADP /Ki < 10?7 M/ in the oligomycin-sensitive ATPase of beef heart submitochondrial particles. The ATPase·ADP complex is completely inactive in the ATPase reaction; it can be converted into active ATPase in a slow ATP-dependent reaction. The dependence of a first order rate constant for activation of the enzyme·ADP complex on concentration of ATP gives a Km value equal to that for ATP in the ATPase reaction. The data obtained suggest that the membrane-bound ATPase complex contains two kinetically distinct nucleotide-binding centers, i.e. center 1 binds ATP or ADP with a formation of enzyme-substrate or enzyme-competitive inhibitor complexes: center 2 binds ADP with a formation of a complex which is able to bind ATP in center 1 and unable to hydrolyze the bound ATP. The binding of ATP or ADP in center 1 changes the reactivity of center 2 towards ADP.  相似文献   

9.
J W Soper  P L Pedersen 《Biochemistry》1976,15(12):2682-2690
The hydrolytic activity of the ATPase bound to purified inner membrane vesicles of rat liver mitochondria can be increased threefold by washing extensively with a high ionic strength phosphate buffer. The specific ATPase activities of such phosphate-washed membranes are the highest reported to date for a mitochondrial membrane preparation (21-24 mumol of ATP hydrolyzed min-1 mg-1 in bicarbonate buffer at 37 degrees C). Deoxycholate (0.1 mg/mg of protein) extracts from these membranes a soluble, cold-stable ATPase complex which exhibits a specific activity under optimal assay conditions of 12 mumol of ATP hydrolyzed min-1 mg-1. This complex is not sedimented by centrifugation at 201000 g for 90 min, and readily passes through a 250-A Millipore filter. The ATPase activity of the soluble complex is inhibited 95% by 2.4 muM oligomycin. In addition, inhibitions of 60% or better are obtained in the presence of 1-8 muM dicyclohexylcarbodiimide, p-chloromercuribenzoate, venturicidin, and aurovertin. While a similar complex may be extracted with Triton X-100 this preparation is always lower in both specific activity and in inhibitor sensitivities than the complex extracted with deoxycholate. Detergents of the Tween and Brij series and other detergents of the Triton series are also much less effective than deoxycholate in solubilizing the oligomycin-sensitive. ATPase complex of rat liver. It is concluded that deoxycholate is superior to other detergents as an extractant of the oligomycin-sensitive ATPase complex of rat liver mitochondria, and that the complex extracted with deoxycholate possesses a closer similarity to the membrane-associated ATPase than does the complex extracted with Triton X-100. These studies document the first report of a detergent-solubilized, oligomycin-sensitive ATPase preparation from rat liver mitochondria.  相似文献   

10.
Studies on restoration of membrane-bound adenosinetriphosphatase (ATP phosphohydrolase, EC 3.6.1.3) from Rhodospirillum rubrum show that the δ-subunit is capable of binding to the F1 factor or to the F0 moiety of the F0-F1 ATPase complex. This subunit is thus likely involved in linking the F0 and F1 factor.During solubilization of the oligomycin-sensitive F0-F1 ATPase complex with Triton X-100 the detergent becomes specifically associated with the lipophilic F0 part of the enzyme complex.Crossed immunoelectrophoresis, agglutination tests, and kinetic studies with anti-F1 ATPase antibodies reveal a reaction of immunological identity of membrane-bound ATPase, F0-F1 ATPase, and F1 ATPase.  相似文献   

11.
(i) The method of preparing the oligomycin-insensitive F1-ATPase by chloroform treatment of mitochondrial membranes (Beechey et al., 1975, Biochem. J.148, 533–537) has been modified such that a five-subunit protein is obtained from yeast with an activity of 140 μmol of ATP hydrolyzed/min/mg of protein. Repetition of this procedure in the presence of protease inhibitors (in particular, p-aminobenzamidine) allows isolation of a four-subunit protein with an activity of 243 μmol of ATP hydrolyzed/min/ mg of protein, (ii) A modified procedure is described for the preparation of the yeast oligomycin-sensitive F1-F0 ATPase complex, making use of protease inhibitors throughout and solubilization of the ATPase from mitochondrial membranes using Triton X-100 and sodium deoxycholate simultaneously. Two polypeptides Of 42,000 and 29,000 molecular weight are eliminated, the largest corresponding to the missing band of the F1 sector. The complex retains oligomycin- and uncoupler-sensitive ATP-32Pi exchange and ATP-driven proton uptake, indicating the retention of a complete coupling mechanism. (iii) F1-ATPase is released from the F1-F0 complex by brief heating at 50 °C in the presence of ATP. The remaining hydrophobic polypeptides aggregate and are isolated by centrifugation. The F1 sector can be isolated containing either four or five subunits depending on whether the starting F1-F0 complex contained the 42,000 and 29,000 molecular weight polypeptides. (iv) Sensitivity of the F1-F0 ATPase complex to oligomycin and dicyclohexylcarbodiimide varies considerably depending on the activity measured and whether the complex was first reconstituted with phospholipids. The degree of inhibitor sensitivity is considered a poor guide to intactness of the complex.  相似文献   

12.
Adenylyl imidodiphosphate (AMP-PNP), an analog of adenosine triphosphate (ATP), was found to be an effective inhibitor of adenine nucleotide translocation in rat liver mitochondria. Inhibition by AMP-PNP was shown to be competitive with ATP. Therefore, studies designed to evaluate the interaction of ATP with mitochondrial adenosine triphosphatase (ATPase) in the presence of AMP-PNP were carried out on submitochondrial particles which lack a membrane barrier between the enzyme and the test medium. The effect of AMP-PNP on the ATP-driven reversed electron transfer reaction in sonically prepared submitochondrial particles was further examined by using oligomycin to induce coupling. The ATPase of oligomycin treated particles did not show significantly different sensitivity to AMP-PNP. Submitochondrial particles which were sensitive to AMP-PNP were less efficient in driving energy-coupled reactions. Results from these studies indicate that uncoupling in mitochondria is not only due to a leaky membrane but may also result from an altered membrane-ATPase association.  相似文献   

13.
The binding parameters of the oligomycin-sensitivity conferring protein (OSCP) in inside-out particles from beef heart mitochondria have been tested by means of two assays, the oligomycin-sensitive ATP-Pi exchange, and the oligomycin-sensitive ATP hydrolysis. The total number of OSCP binding sites in A particles was equal to 220 pmol/mg particle protein. Each mole of ATPase active site was able to bind 1.1 +/- 0.5 mol OSCP with Kd 1.7 nM.  相似文献   

14.
Studies on the effects of polyamines on oligomycin-sensitive ATPase activity of ox heart submitochondrial particles showed that, of the polyamines tested, only spermine affected the enzyme activity. Spermine within the physiological concentration range increased the Vmax. of the enzyme, but the Km for ATP was virtually unaffected. Binding studies of [14C]spermine to submitochondrial particles, under the same conditions as used for the ATPase assay, showed that the spermine binds to submitochondrial particles in a co-operative way; Hill plots of the data gave a Hill coefficient of 2 and a Kd of 8 microM. When submitochondrial particles were treated with trypsin, ATPase was not stimulated by spermine and the amount of spermine bound concomitantly was drastically decreased. The ATPase activity of isolated F1-ATPase was not affected by spermine. Removal of the natural protein ATPase inhibitor did not suppress either the stimulation of the ATPase activity by spermine or the spermine binding to the particles. The results obtained suggested that the polyamine binds and acts at the level of the liaison between the coupling factor F1 and the membrane sector F0 of the ATPase complex.  相似文献   

15.
Submitochondrial particles subjected to an artificially imposed electrochemical proton gradient consisting of a pH gradient (acid to base transition) and membrane potential (low to high K-+ transition in the presence of valinomycin) catalyzed the net synthesis of 2.5 nmol of [-32P]ATP per mg of protein from ADP and 32-Pi. Optimal reaction conditions included incubation of submitochondrial particles in malonate at pH 5.0 with valinomycin in the absence of added K-+, followed by a rapid transition to pH 7.5 and 100 mM K-+. ATP synthesis continued for about 6 s and was sensitive to uncouplers or oligomycin but insensitive to inhibitors of electron transport. Lower amounts of ATP were formed by either the pH gradient (25%) of K-+ gradient (15%) alone. These results demonstrate that an electrochemical gradient of protons can drive the synthesis of ATP by reversal of the proton-translocating ATPase independent of electron transport.  相似文献   

16.
Beef liver mitochondrial F1ATPase was inactivated by the 2',3'-dialdehyde derivative of ethenoATP (epsilon ATP) in a pseudo-first order reaction. The kinetics of protection of the enzyme against inactivation by various nucleoside triphosphates (NTPs) revealed that the dial-epsilon ATP was bound to the catalytic site as an affinity label. Certain anions (sulfate or bicarbonate) were ineffective for protection. In the early phase of the reaction, inactivation was due to the binding of 1 mol dial-epsilon ATP per mol enzyme. In this phase, dial-epsilon ATP bound exclusively to the subunit beta of the enzyme, indicating that the catalytic site is in this subunit. The fluorescence of the ethenoadenosine moiety, bound exclusively to the subunit beta of the enzyme, was measured as a conformational probe of the catalytic site region. Addition of ATP or CTP to the labeled enzyme resulted in a decrease in the fluorescence intensity. GTP and other NTPs were less effective than ATP or CTP. The anions (sulfate of bicarbonate) suppressed the ability of ATP to decrease the fluorescence in a competitive manner. Quantitative analysis of these fluorescence changes suggested that they might originate from the binding of the NTP to the regulatory site of the enzyme. These findings are in good agreement with the two-site model proposed by us (Wakagi, T. & Ohta, T. (1981) J. Biochem. 89, 1205) which was deduced from the steady state kinetics of the NTPase reactions catalyzed by the F1ATPase.  相似文献   

17.
The lipid-free particulate preparations of the mitochondrial ATPase require phospholipid for activity and can be inhibited by oligomycin, as has been demonstrated previously. In this communication a steady state analysis of the activation of a particulate preparation of the ATPase by phospholipids and its subsequent inhibition by oligomycin has been carried out. The relative affinity of the ATPase for purified phospholipids has been determined by measuring the Km for activation (Ka) for several phospholipids. The Ka values varied from 30 to 100 mum. The Vmax in the presence of phosphatides varies from 0.29 to 1.11 mumol ATP hydrolyzed/min/mg of protein; no correlation is noted between the relative affinity of the enzyme for a phospholipid and the V max value. Higher V max values are noted with the more acidic phospholipids, however. Sodium dodecyl sulfate and monoolein also activate with Ka values of 25 and 800 mum, respectively. Diglycerides, however, do not activate. With all lipids the ATPase activity stimulated is oligomycin-sensitive. The Ki values for oligomycin range from 0.1 to 0.6 mum. Oligomycin is a competitive inhibitor with respect to all the phospholipids tested except phosphatidylethanolamine and phosphatidyglycerol. It is also competitive with respect to sodium dodecyl sulfate (k-i equals 0.94 mum). In reciprocal plots of activity versus ATP concentration, with and without oligomycin, an intercept consistent with either mixed or partial noncompetitive inhibition kinetics is noted. Comparable K-i values for oligomycin are obtained when calculated assuming either mixed or partial noncompetitive inhibition. The Km for ATP is the same in the unactivated and the lipid activated particulate ATPase; the value obtained is slightly lower than the Km for ATP in the solubilized, purified ATPase. Using a spectrophotometric assay the time required for activation with phospholipid and inhibition with oligomycin has also been determined. This investigation suggests the possibility that activation of the ATPase is due a position to interact with the water-soluble substrate. Consistent with the above suggestion is the supposition that the lipids do not necessarily confer inhibitor sensitivity to the ATPase, but rather allow an oligomycin-sensitive activity to be expressed.  相似文献   

18.
Ciliary 30S dynein of Tetrahymena was investigated with regard to modification of the ATPase activity with N-ethylmaleimide (NEM) in the presence of ATP. The elevation of enzyme activity due to the modification was largely repressed by addition of ATP at a concentration of 1 mM or more during preincubation of 20 h at 0 degrees C. The repression was highly specific for ATP, though ADP and AMPPNP showed slight repressive effects. After complete hydrolysis of ATP added to the preincubation mixture, however, elevation of 30S dynein ATPase activity occurred. It is suggested that the repression by ATP of NEM-induced elevation of 30S dynein ATPase activity is simply due to a protecting effect of ATP on certain SH group(s) (probably SH1-type group(s)) around the active center of 30S dynein. When 30S dynein was maximally activated by modification with NEM, ATP or ADP did not significantly promote the inactivation of the modified enzyme upon further treatment with NEM, indicating that 30S dynein lacks the characteristics of SH2-type groups. On the other hand, ATP also showed a protective effect against inhibition of native 30S dynein by high concentrations of NEM. High concentrations of ADP and AMPPNP were inhibitory to 30S dynein ATPase activity but inorganic phosphate did not inhibit 14S or 30S dynein ATPase activities at all.  相似文献   

19.
P D Wagner  R G Yount 《Biochemistry》1975,14(23):5156-5162
A purine disulfide analog of ATP, 6,6'-dithiobis(inosinyl imidodiphosphate), forms mixed disulfide bonds between the 6 thiol group on the purine ring and certain key cysteines on myosin, heavy meromyosin, and subfragment one. The EDTA ATPase activities of myosin and heavy meromyosin were completely inactivated when 4 mol of thiopurine nucleotide was bound. When similarly inactivated, subfragment one, depending on its method of preparation, incorporated either 1 or 2 mol of thiopurine nucleotide. Modification of a single cysteine on subfragment one resulted in an inhibition of both the Ca2+ and the EDTA ATPase activities, but the latter always to a greater extent. Modification of two cysteines per head of heavy meromyosin had the same effect suggesting that the active sites were not blocked by the thiopurine nucleotides. Direct evidence for this suggestion was provided by equilibrium dialysis experiments. Heavy meromyosin and subfragment one bound 1.9 and 0.8 mol of [8-3H]adenylyl imidodiphosphate per mol of enzyme, respectively, with an average dissociation constant of 5 X 10(-7) M. Heavy meromyosin with four thiopurine nucleotides bound or subfragment one with two thiopurine nucleotides bound retained 65-80% of these tight adenylyl imidodiphosphate binding sites confirming the above suggestion. Thus previous work assuming reaction of thiopurine nucleotide analogs at the active site of myosin must be reevaluated. Ultracentrifugation studies showed that heavy meromyosin which had incorporated four thiopurine nucleotides did not bind to F-actin while subfragment one with one thiopurine nucleotide bound interacted only very weakly with F-actin. Thus reaction of 6,6'-dithiobis(inosinyl imidodiphosphate) at nucleotide binding sites other than the active sites reduces the rate of ATP hydrolysis and inhibits actin binding. It is suggested that these second sites may function as regulatory sites on myosin.  相似文献   

20.
Two lipoic acid residues on each dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Escherichia coli were found to undergo oxidoreduction reactions with NAD+ catalysed by the lipoamide dehydrogenase component. It was observed that: (a) 2 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of acetyl-SCoA and NADH; (b) 4 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of NADH; (c) between 1 and 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with acetyl-SCoA plus NADH; (d) 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with pyruvate either before or after many catalytic turnovers through the overall reaction. There was no evidence to support the view that only half of the dihydrolipoic acid residues can be reoxidized by NAD+. However, chemical modification of lipoic acid residues with N-ethylmaleimide was shown to proceed faster than the accompanying loss of enzymic activity under all conditions tested, which indicates that not all the lipoyl groups are essential for activity. The most likely explanation for this result is an enzymic mechanism in which one lipoic acid residue can take over the function of another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号