首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The severity and increase of the Imperata cylindrica constraint as a weed, the decline of the traditional fallow systems as a means of soil fertility management and the lack of inorganic fertilizer appear to have created opportunities for adoption of mucuna (Mucuna pruriens) technology by smallholder farmers in some areas in the derived savanna of West Africa. What is not known, however, is the extent to which the establishment and N contribution of mucuna in these areas depend on symbiotic properties such as effective nodulation and mycorrhizal infection. Short term surveys carried out in 34 farmer's arable fields located in four different sites in the derived savanna, southern Benin, West Africa, together with results of greenhouse and field experiments showed that mycorrhizal infection rate of mucuma ranged from 2 to 31% and correlated positively with nodulation and shoot dry matter production. Nodulation occurred in 79% of the fields with numbers of nodules ranging from 0 to 135 plant–1. Mucuna responded both to inoculation and N fertilizer in degraded soils but growth response depended on the rhizobia strains and mucuna varieties. Mucuna accumulated in 12 weeks about 313 kg N ha–1 as either a sole crop or 166 kg N ha–1 when mixed/intercropped with maize, respectively. Across all cropping systems it derived an average of 70% of its N from atmospheric N2 (estimates made by the 15N isotope dilution method), representing 167 kg N ha–1 per 12 weeks in the field. Mucuna interplanted with maize obtained a greater proportion of its nitrogen (74%) from fixation than did mucuna grown alone (66%) suggesting that competition for soil N influences the proportion of nitrogen fixed by mucuna. The total amount of N2 fixed per hectare was, however, reduced significantly by intercropping mucuna with maize. A preceding mucuna crop provided a maize yield equivalent to 120 kg N kg ha–1 of inorganic N fertilizer.  相似文献   

2.
During the past 10 years estimates of N2 fixation associated with sugar cane, forage grasses, cereals and actinorhizal plants grown in soil with and without addition of inoculum have been obtained using the 15N isotope dilution technique. These experiments are reviewed in this paper with the aim of determining the proportional and absolute contribution of N2 fixation to the N nutrition of non-legumes, and its role as a source of N in agriculture. The review also identifies deficiencies in both the totality of data which are currently available and the experimental approaches used to quantify N2 fixation associated with non-legumes.Field data indicate that associative N2 fixation can potentially contribute agronomically-significant amounts of N (>30–40 kg N ha-1 y-1) to the N nutrition of plants of importance in tropical agriculture, including sugar cane (Saccharum sp.) and forage grasses (Panicum maximum, Brachiaria sp. and Leptochloa fusca) when grown in uninoculated, N-deficient soils. Marked variations in proportions of plant N derived from the atmosphere have been measured between species or cultivars within species.Limited pot-culture data indicate that rice can benefit naturally from associative N2 fixation, and that inoculation responses due to N2 fixation can occur. Wheat can also respond to inoculation but responses do not appear to be due to associative N2 fixation. 15N dilution studies confirm that substantial amounts of N2 can be fixed by actinorhizal plants.  相似文献   

3.
An analysis of data compiled from the literature confirms a strong inverse relationship between annual rates of nitrogen fixation and the soil nitrogen content in agricultural and pastoral ecosystems. However, this inverse relationship is strongly modified by the rate of application of phosphorus fertilizer, which strongly influences the activities of both symbiotic and non-symbiotic nitrogen fixing organisms. In the case of symbiotic legumes, the response of N-fixation to N and P is in part a result of changes in legume dominance within the plant community. These results, as well as supporting data presented from a review of experiments on nitrogen fixation in a variety of other terrestrial and aquatic ecosystems, provide important support for the hypothesis that phosphorus availability is a key regulator of nitrogen biogeochemistry. Published as Paper No. 9950, Journal Series, Nebraska Agricultural Research Division, University of Nebraska, Lincoln, NE, USA.  相似文献   

4.
Biological nitrogen fixation of leguminous crops is becoming increasingly important in attempts to develop sustainable agricultural production. However, these crops are quite variable in their effectiveness in fixing nitrogen. By the use of the 15N isotope dilution method some species have been found to fix large proportions of their nitrogen, while others like common bean have been considered rather inefficient. Methods for increasing N2 fixation are therefore of great importance in any legume work. Attempts to enhance nitrogen fixation of grain legumes has been mainly the domain of microbiologists who have selected rhizobial strains with superior effectiveness or competitive ability. Few projects have focused on the plant symbiont with the objective of improving N2 fixation as done in the FAO/IAEA Co-ordinated Research Programme which is being reported in this volume. The objective of the present paper is to discuss some possibilities available for scientists interested in enhancing symbiotic nitrogen fixation in grain legumes. Examples will be presented on work performed using agronomic methods, as well as work on the plant and microbial symbionts. There are several methods available to scientists working on enhancement of N2 fixation. No one approach is better than the others; rather work on the legume/Rhizobium symbiosis combining experience from various disciplines in inter-disciplinary research programmes should be pursued.  相似文献   

5.
Jacot  Katja A.  Lüscher  Andreas  Nösberger  Josef  Hartwig  Ueli A. 《Plant and Soil》2000,225(1-2):201-211
The significance of symbiotic N2 fixation in legumes (Trifolium alpinum L., T. nivale Sieber, T. pratense L., T. badium Schreber, T. thalii Vill., T. repens L., Lotus alpinus [DC.] Schleicher, L. corniculatus L., Vicia sativa L.) and other N sources for the N budget of grassland ecosystems was studied along an altitudinal gradient in the Swiss Alps. The total annual symbiotic N2 fixation was compared with other sources of N for plant growth of the total plant community (mineralisation and wet deposition). The contribution of symbiotically fixed N to total above-ground N yield of the swards decreased from at least 16% to 9% with increasing altitude where legumes were present. This decrease was due to a decrease in the yield proportion of legumes from 15% at 900 and 1380 m a.s.l. to 5% at 2100 and 2300 m a.s.l. (no legumes were found above 2750 m a.s.l.) and not to a decline in the activity of symbiotic N2 fixation. With increasing altitude legumes are more patchily distributed. The high symbiotic N2 fixation of individual plants up to their altitudinal limit is not primarily the result of low mineral N availability since an addition of NH4 + or NO3 fertiliser at 2300 m a.s.l. led either to no decrease or only to a minor decrease in symbiotic N2 fixation. At 1380 m a.s.l., N mineralisation (13.45 g N m−2 yr−1) appeared to be the main source of N for growth of the sward; N from symbiosis (at least 1.0 g to 2.6 g N m−2 yr−1) and wet deposition (0.4 g to 0.6 g m−2 yr−1) was not a significant N source for plant growth at this altitude. At 2100 m a.s.l., the combined amounts of N from symbiotic N2 fixation (at least 0.1 g N m−2 yr−1) and wet deposition (0.3 g N m−2 yr−1) appeared to be similarly important for plant growth as soil N mineralisation (0.47 g N m−2 yr−1). At high altitudes, wet N deposition and symbiotic N2 fixation together represent a significant source of N for the grassland ecosystem while at low altitudes these N inputs appear to be much less important. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
《Plant Ecology & Diversity》2013,6(2-3):131-140
Background: Nitrogen fixation has been quantified for a range of crop legumes and actinorhizal plants under different agricultural/agroforestry conditions, but much less is known of legume and actinorhizal plant N2 fixation in natural ecosystems.

Aims: To assess the proportion of total plant N derived from the atmosphere via the process of N2 fixation (%Ndfa) by actinorhizal and legume plants in natural ecosystems and their N input into these ecosystems as indicated by their 15N natural abundance.

Methods: A comprehensive collation of published values of %Ndfa for legumes and actinorhizal plants in natural ecosystems and their N input into these ecosystems as estimated by their 15N natural abundance was carried out by searching the ISI Web of Science database using relevant key words.

Results: The %Ndfa was consistently large for actinorhizal plants but very variable for legumes in natural ecosystems, and the average value for %Ndfa was substantially greater for actinorhizal plants. High soil N, in particular, but also low soil P and water content were correlated with low legume N2 fixation. N input into ecosystems from N2 fixation was very variable for actinorhizal and legume plants and greatly dependent on their biomass within the system.

Conclusions: Measurement of 15N natural abundance has given greater understanding of where legume and actinorhizal plant N2 fixation is important in natural ecosystems. Across studies, the average value for %Ndfa was substantially greater for actinorhizal plants than for legumes, and the relative abilities of the two groups of plants to utilise mineral N requires further study.  相似文献   

7.
8.
根瘤菌共生固氮能力的进化模式   总被引:2,自引:0,他引:2  
根瘤菌-豆科植物共生固氮体系对农业的可持续性发展至关重要,也是研究原核与真核生物互利共生的模式体系之一。长期以来,根瘤菌共生固氮相关研究主要集中在结瘤因子与固氮酶合成及调控等少数关键基因,但仅获得这些关键基因却不能保证细菌获得结瘤固氮能力。随着比较和功能基因组学的快速发展和应用,越来越多的研究发现根瘤菌使用了很多系统发育分支特异的遗传机制与豆科植物建立有效的共生关系,进一步揭示了双方互利共生的复杂性。本综述总结了近年来比较基因组学、遗传学以及实验进化等方面的相关研究进展,在此基础上讨论根瘤菌共生固氮能力的进化模式。  相似文献   

9.
A Rhizobium trifolii symbiotic plasmid specific gene library was constructed and the physical organisation of regions homologous to nifHDK, nifA and nod genes was determined. These symbiotic gene regions were localised to u 25 kb region on the sym-plasmid, pPN1. In addition four copies of a reiterated sequence were identified on this plasmid, with one copy adjacent to nifH. No rearrangement of these reiterated sequences was observed between R. trifolii bacterial and bacteroid DNA. Analysis of a deletion derivative of pPN1 showed that these sequences were spread over a 110 kb region to the left of nifA.  相似文献   

10.
The natural history of nitrogen fixation   总被引:1,自引:0,他引:1  
In recent years, our understanding of biological nitrogen fixation has been bolstered by a diverse array of scientific techniques. Still, the origin and extant distribution of nitrogen fixation has been perplexing from a phylogenetic perspective, largely because of factors that confound molecular phylogeny such as sequence divergence, paralogy, and horizontal gene transfer. Here, we make use of 110 publicly available complete genome sequences to understand how the core components of nitrogenase, including NifH, NifD, NifK, NifE, and NifN proteins, have evolved. These genes are universal in nitrogen fixing organisms-typically found within highly conserved operons-and, overall, have remarkably congruent phylogenetic histories. Additional clues to the early origins of this system are available from two distinct clades of nitrogenase paralogs: a group composed of genes essential to photosynthetic pigment biosynthesis and a group of uncharacterized genes present in methanogens and in some photosynthetic bacteria. We explore the complex genetic history of the nitrogenase family, which is replete with gene duplication, recruitment, fusion, and horizontal gene transfer and discuss these events in light of the hypothesized presence of nitrogenase in the last common ancestor of modern organisms, as well as the additional possibility that nitrogen fixation might have evolved later, perhaps in methanogenic archaea, and was subsequently transferred into the bacterial domain.  相似文献   

11.
12.
In nitrogen (N)-limited systems, the response of symbiotic N fixation to elevated atmospheric [CO2] may be an important determinant of ecosystem responses to this global change. Experimental tests of the effects of elevated [CO2] have not been consistent. Although rarely tested, differences among legume species and N supply may be important. In a field free-air CO2 enrichment (FACE) experiment, we determined, for four legume species, whether the effects of elevated atmospheric [CO2] on symbiotic N fixation depended on soil N availability or species identity. Natural abundance and pool-dilution 15N methods were used to estimate N fixation. Although N addition did, in general, decrease N fixation, contrary to theoretical predictions, elevated [CO2] did not universally increase N fixation. Rather, the effect of elevated [CO2] on N fixation was positive, neutral or negative, depending on the species and N addition. Our results suggest that legume species identity and N supply are critical factors in determining symbiotic N-fixation responses to increased atmospheric [CO2].  相似文献   

13.
Summary The 36 mutants which did not nodulate and 24 mutants which formed inefficient nodules with no or very low acetylene reduction activity were isolated among 86,000 M2-seedlings of Finale pea, Pisum sativum L., after treatment with chemical mutagens. One mutant was found for approximately every 50 chlorophyll mutants. Most mutations were induced by ethyl methanesulfonate; some by diethyl sulfate, ethyl nitrosourea and acidified sodium azide. Putative mutants were selected as nitrogen deficient plants, yellowing from the bottom and up, when M2 seedlings were grown in sand with a Rhizobium mixture and PK fertilizer. The mutants were verified in the M3 generation by acetylene reduction assay on intact plants.  相似文献   

14.
The response of plants to elevated CO2 is dependent on the availability of nutrients, especially nitrogen. It is generally accepted that an increase in the atmospheric CO2 concentration increases the C:N ratio of plant residues and exudates. This promotes temporary N-immobilization which might, in turn, reduce the availability of soil nitrogen. In addition, both a CO2 stimulated increase in plant growth (thus requiring more nitrogen) and an increased N demand for the decomposition of soil residues with a large C:N will result under elevated CO2 in a larger N-sink of the whole grassland ecosystem. One way to maintain the balance between the C and N cycles in elevated CO2 would be to increase N-import to the grassland ecosystem through symbiotic N2 fixation. Whether this might happen in the context of temperate ecosystems is discussed, by assessing the following hypothesis: i) symbiotic N2 fixation in legumes will be enhanced under elevated CO2, ii) this enhancement of N2 fixation will result in a larger N-input to the grassland ecosystem, and iii) a larger N-input will allow the sequestration of additional carbon, either above or below-ground, into the ecosystem. Data from long-term experiments with model grassland ecosystems, consisting of monocultures or mixtures of perennial ryegrass and white clover, grown under elevated CO2 under free-air or field-like conditions, supports the first two hypothesis, since: i) both the percentage and the amount of fixed N increases in white clover grown under elevated CO2, ii) the contribution of fixed N to the nitrogen nutrition of the mixed grass also increases in elevated CO2. Concerning the third hypothesis, an increased nitrogen input to the grassland ecosystem from N2 fixation usually promotes shoot growth (above-ground C storage) in elevated CO2. However, the consequences of this larger N input under elevated CO2 on the below-ground carbon fluxes are not fully understood. On one hand, the positive effect of elevated CO2 on the quantity of plant residues might be overwhelming and lead to an increased long-term below-ground C storage; on the other hand, the enhancement of the decomposition process by the N-rich legume material might favour carbon turn-over and, hence, limit the storage of below-ground carbon.  相似文献   

15.
Summary The alder has a perennial nodule cluster. The nodule amount on the roots increases with tree age. The N2-fixing activity of nodules decreases with nodule age. Purple coloured soils with various soil pHs and CaCO3 contents are, in the main, the ones which influence nodulation and N2-fixing. Higher N2-fixing capacity existed in the neutral and low calcium soils. High calcium soils and acid soils can restrain nodulation and the N2-fixing rate significantly. On the slope, where calcarous light loams are found, the annual nitrogen fixation capacity of alder and cypress mixed plantations, less than 10 years old, is 16 or 17 kg/ha yr, but in the valley, a pure alder plantation can reach 40 kg/ha yr.  相似文献   

16.
Several genera of N2-fixing bacteria establish symbiotic associations with plants. Among these, the genus Rhizobium has the most significant contribution, in terms of yield, in many important crop plants. The establishment of the Rhizobium-legume symbiosis is a very complex process involving many genes which need to be co-ordinately regulated. In the first instance, plant signal molecules, known to be flavonoids, trigger the expression of host-specific genes in the bacterial partner through the action of the regulatory NodD protein. In response to these signals, Rhizobium bacteria synthesize lipo-oligosaccharide molecules which in turn cause cell differentiation and nodule development. Once the nodule has formed, Rhizobium cells differentiate into bacteroids and another set of genes is activated. These genes, designated nif and fix, are responsible for N2 fixation. In this system, several regulatory proteins are involved in a complex manner, the most important being NifA and a two component (FixK and FixL) regulatory system. Our knowledge about the establishment of these symbioses has advanced recently, although there are many questions yet to be solved.  相似文献   

17.
Oxygen and the regulation of nitrogen fixation in legume nodules   总被引:3,自引:0,他引:3  
In N2-fixing legume nodules, O2 is required in large amounts for aerobic respiration, yet nitrogenase, the bacterial enzyme that fixes N2, is O2 labile. A high rate of O2 consumptition and a cortical barrier to gas diffusion work together to maintain a low, non-inhibitory O2 concentration in the central, infected zone of the nodule. At this low O2 concentration, cytosolic leghemoglobin is required to facilitate the diffusion of O2 through the infected cell to the bacteria. The resistance of the cortical diffusion barrier is variable and is used by legume nodules to regulate the O2 concentration in the infected cells such that it limits aerobic respiration and N2 fixation at all times. The resistance of the diffusion barrier and therefore the degree of O2 limitation seems to be regulated in response to changes in the O2 concentration of the central infected zone, the supply of phloem sap to the nodule, and the rate of N assimilation into the end products of fixation.  相似文献   

18.
19.
Nitrogen fixation activity by soybean (Glycine max (L.) Merr.) nodules has been shown to be especially sensitive to soil dehydration. Specifically, nitrogen fixation rates have been found to decrease in response to soil dehydration preceding alterations in plant gas exchange rates. The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. Field tests showed substantial variation among cultivars with Jackson and CNS showing the least sensitivity in nitrogen accumulation to soil drying. Glasshouse experiments confirmed a large divergence among cultivars in the nitrogen fixation response to drought. Nitrogen fixation in Jackson was again found to be tolerant of soil drying, but the other five cultivars tested, including CNS, were found to be intolerant. Experiments with CNS which induced localized soil drying around the nodules did not result in decreases in nitrogen fixation rates, but rather nitrogen fixation responded to drying of the entire rooting volume. The osmotic potential of nodules was found to decrease markedly upon soil drying. However, the decrease in nodule osmotic potential occurred after significant decreases in nitrogen fixation rates had already been observed. Overall, the results of this study indicate that important genetic variations for sensitivity of nitrogen fixation to soil drying exist in soybean, and that the variation may be useful in physiology and breeding studies.  相似文献   

20.
Ecosystems with high rates of nitrogen fixation often have high loss rates through leaching or possibly denitrification. However, there is no formal theoretical context to examine why this should be the case nor of how nitrogen accumulates in such open systems. Here, we propose a simple model coupling nitrogen inputs and losses to carbon inputs and losses. The nitrogen balance of this model system depends on plant (nitrogen fixer) growth rate, its carrying capacity, N fixed/C fixed, residence time of nitrogen and carbon in biomass, litter decay rate, litter N/C, and fractional loss rate of mineralized nitrogen. The model predicts the requirements for equilibrium in a nitrogen-fixing system, and the conditions on nitrogen fixation and losses in order for the system to accumulate nitrogen and carbon. In particular, the accumulation of nitrogen and carbon in a nitrogen-fixing system depend on an interaction between residence time in vegetation and litter decay rate in soil. To reflect a possible increased uptake of soil nitrogen and decreased respiratory cost of symbiotic nitrogen fixers, the model was then modified so that fixation rate decreased and growth rate increased as nitrogen capital accumulated. These modifications had only small effects on carbon and nitrogen accumulation. This suggests that switching from uptake of atmospheric nitrogen to mineral soil nitrogen as nitrogen capital accumulates simply results in a trade-off between energetic limitations and soil nitrogen limitations to carbon and nitrogen accumulation. Experimental tests of the model are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号