首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1987,105(6):2631-2639
The mitochondrial matrix enzyme ornithine transcarbamylase (OTC) is synthesized on cytoplasmic polyribosomes as a precursor (pOTC) with an NH2-terminal extension of 32 amino acids. We report here that rat pOTC synthesized in vitro is internalized and cleaved by isolated rat liver mitochondria in two, temporally separate steps. In the first step, which is dependent upon an intact mitochondrial membrane potential, pOTC is translocated into mitochondria and cleaved by a matrix protease to a product designated iOTC, intermediate in size between pOTC and mature OTC. This product is in a trypsin-protected mitochondrial location. The same intermediate-sized OTC is produced in vivo in frog oocytes injected with in vitro-synthesized pOTC. The proteolytic processing of pOTC to iOTC involves the removal of 24 amino acids from the NH2 terminus of the precursor and utilizes a cleavage site two residues away from a critical arginine residue at position 23. In a second cleavage step, also catalyzed by a matrix protease, iOTC is converted to mature OTC by removal of the remaining eight residues of leader sequence. To define the critical regions in the OTC leader peptide required for these events, we have synthesized OTC precursors with alterations in the leader. Substitution of either an acidic (aspartate) or a "helix-breaking" (glycine) amino acid residue for arginine 23 of the leader inhibits formation of both iOTC and OTC, without affecting translocation. These mutant precursors are cleaved at an otherwise cryptic cleavage site between residues 16 and 17 of the leader. Interestingly, this cleavage occurs at a site two residues away from an arginine at position 15. The data indicate that conversion of pOTC to mature OTC proceeds via the formation of a third discrete species: an intermediate-sized OTC. The data suggest further that, in the rat pOTC leader, the essential elements required for translocation differ from those necessary for correct cleavage to either iOTC or mature OTC.  相似文献   

2.
Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re-inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility.  相似文献   

3.
An artificially inserted extra peptide (21 amino acid peptide) between the B. subtilis alpha-amylase signal peptide and the mature thermostable alpha-amylase was completely cleaved by B. subtilis alkaline protease in vitro. The cleavage to form a mature enzyme was observed between pH 7.5 and 10, but not between pH 6.0 and 6.5, although a similar protease activity toward Azocall was observed between pH 6.0 and 7.5. To analyze the effects of pH on the cleavage, CD spectra at pH 6, 8, and 11 of the NH2-terminally extended thermostable alpha-amylase were analyzed and the results were compared with those of the mature form of the alpha-amylase. It is suggested that the cleavage of the NH2-terminally extended peptide is controlled by the secondary and tertiary structure of the precursor enzyme. Similar cleavage of different NH2-terminally extended peptides by the alkaline protease was also found in other hybrid thermostable alpha-amylases obtained.  相似文献   

4.
Mitochondrial uptake of the cytoplasmically synthesized precursor of the mammalian enzyme ornithine transcarbamylase is mediated by an N-terminal leader sequence of 32 amino acids. In the mitochondrial matrix, the precursor form is processed to the mature subunit by proteolytic removal of this pre-sequence and in the enzyme from rat liver it has been suggested that this occurs in a two-step process which involves an intermediate cleavage at residue 24. We show that deletion of residues 20-26 spanning this intermediate cleavage site prevents correct processing to the mature subunit but it does not prevent mitochondrial targeting and internalization or assembly of the incorrectly processed product into a catalytically active enzyme. The incorrectly processed enzyme, which is larger than the normal mature enzyme, is nevertheless more susceptible to proteolytic degradation in permanently transfected human cells than the correctly processed enzyme.  相似文献   

5.
The amino acid sequence predicted from a rat liver cDNA library indicated that the precursor of beta-AlaAT I (4-aminobutyrate aminotransferase, beta-alanine-oxoglutarate aminotransferase) consists of a mature enzyme of 466 amino acid residues and a 34-amino acid terminal segment, with amino acids attributed to the leader peptide. However, the mass of beta-AlaAT I from rat brain was larger than that from rat liver and kidney, as assessed by Western-blot analysis, mass spectroscopy and N-terminal sequencing. The mature form of beta-AlaAT I from the brain had an ISQAAAK- peptide on the N-terminus of the liver mature beta-AlaAT I. Brain beta-AlaAT I was cleaved to liver beta-AlaAT I when incubated with fresh mitochondrial extract from rat liver. These results imply that mature rat liver beta-AlaAT I is proteolytically cleaved in two steps. The first cleavage of the motif XRX( downward arrow)XS is performed by a mitochondrial processing peptidase, yielding an intermediate-sized protein which is the mature brain beta-AlaAT I. The second cleavage, which generates the mature liver beta-AlaAT I, is also carried out by a mitochondrial endopeptidase. The second peptidase is active in liver but lacking in brain.  相似文献   

6.
Processing of pulmonary surfactant protein B by napsin and cathepsin H   总被引:10,自引:0,他引:10  
Surfactant protein B (SP-B) is an essential constituent of pulmonary surfactant. SP-B is synthesized in alveolar type II cells as a preproprotein and processed to the mature peptide by the cleavage of NH2- and COOH-terminal peptides. An aspartyl protease has been suggested to cleave the NH2-terminal propeptide resulting in a 25-kDa intermediate. Napsin, an aspartyl protease expressed in alveolar type II cells, was detected in fetal lung homogenates as early as day 16 of gestation, 1 day before the onset of SP-B expression and processing. Napsin was localized to multivesicular bodies, the site of SP-B proprotein processing in type II cells. Incubation of SP-B proprotein from type II cells with a crude membrane extract from napsin-transfected cells resulted in enhanced levels of a 25-kDa intermediate. Purified napsin cleaved a recombinant SP-B/EGFP fusion protein within the NH2-terminal propeptide between Leu178 and Pro179, 22 amino acids upstream of the NH2 terminus of mature SP-B. Cathepsin H, a cysteine protease also implicated in pro-SP-B processing, cleaved SP-B/EGFP fusion protein 13 amino acids upstream of the NH2 terminus of mature SP-B. Napsin did not cleave the COOH-terminal peptide, whereas cathepsin H cleaved the boundary between mature SP-B and the COOH-terminal peptide and at several other sites within the COOH-terminal peptide. Knockdown of napsin by small interfering RNA resulted in decreased levels of mature SP-B and mature SP-C in type II cells. These results suggest that napsin, cathepsin H, and at least one other enzyme are involved in maturation of the biologically active SP-B peptide.  相似文献   

7.
Point mutations in the presequence of the mitochondrial alcohol dehydrogerase isoenzyme (ADH III) have been shown to affect either the import of the precursor protein into yeast mitochondria in vivo or its processing within the organelle. In the present work, the behavior of these mutants during in vitro import into isolated mitochondria was investigated. All point mutants tested were imported with a slower initial rate than that of the wild-type precursor. This defect was corrected when the precursors were treated with urea prior to import. Once imported, the extent of processing to the mature form of mutant precursors varied greatly and correlated well with the defects observed in vivo. This result was not affected by prior urea treatment. When matrix extracts enriched for the processing protease were used, this defect was shown to be due to failure of the protease to efficiently recognize or cleave the presequence, rather than to a lack of access to the precursor. The rate of import of two ADH III precursors bearing internal deletions in the leader sequence was similar to those of the point mutants, whereas a deletion leading to the removal of the 15 amino-terminal amino acids was poorly imported. The mature amino terminus of wild-type ADH III was determined to be Gln-25. Mutant m01 (Ser-26 to Phe), which reduced the efficiency of cleavage in vitro by 80%, was cleaved at the correct site.  相似文献   

8.
We have shown previously that cleavage of a number of precursors by the mitochondrial processing peptidase (MPP) requires an intermediate octapeptide (FXXSXXXX) between the MPP cleavage site and the mature protein amino terminus. We show now that these octapeptides, present at the amino termini of the intermediates, direct recognition of these substrates by the mitochondrial intermediate peptidase (MIP), leading to formation of mature proteins. Synthetic peptides, corresponding to the intermediate octapeptides of human ornithine transcarbamylase (OTC) and of Neurospora cytochrome c reductase Fe/S subunit (Fe/S), inhibit the processing activity of purified rat liver MIP in vitro, without affecting MPP activity; this indicates that the octapeptides can be recognized by MIP independent of the presence of the corresponding mature proteins and interact with a site that is crucial for MIP activity. MIP activity is not inhibited by a peptide lacking the amino-terminal hydrophobic residue, while substitution of such a residue by a polar amino acid causes a 10-fold reduction in the efficiency of MIP inhibition. To analyze the requirements for removal of the octapeptide from the intermediate proteins by MIP, artificial intermediates were synthesized and subjected to in vitro processing by purified MIP. The octapeptide can be cleaved by MIP only when the amino-terminal hydrophobic residue is also the amino terminus of the intermediate. Further, when the OTC octapeptide is joined to the mature amino terminus of another twice-cleaved precursor (pFe/S; rat malate dehydrogenase, pMDH), the chimeric intermediate is cleaved by MIP to the corresponding mature-sized protein. When the OTC octapeptide is joined to the mature amino terminus of a once-cleaved precursor (yeast F1-beta-ATPase, pF1-beta), however, this intermediate is not cleaved by MIP; rather, it is processed by MPP to mature-sized F1-beta. Therefore, amino-terminal octapeptides can be cleaved by MIP only within the structural context of twice-cleaved precursors.  相似文献   

9.
The cytoplasmically synthesized precursor of the mitochondrial matrix enzyme, ornithine transcarbamylase (OTC), is targeted to mitochondria by its NH2-terminal leader peptide. We previously established through mutational analysis that the midportion of the OTC leader peptide is functionally required. In this article, we report that study of additional OTC precursors, altered in either a site-directed or random manner, reveals that (a) the midportion, but not the NH2-terminal half, is sufficient by itself to direct import, (b) the functional structure in the midportion is unlikely to be an amphiphilic alpha-helix, (c) the four arginines in the leader peptide contribute collectively to import function by conferring net positive charge, and (d) surprisingly, proteolytic processing of the leader peptide does not require the presence of a specific primary structure at the site of cleavage, in order to produce the mature OTC subunit.  相似文献   

10.
The two subunits of beta-hexosaminidase undergo many post-translational modifications characteristic of lysosomal proteins, including limited proteolysis. To identify proteolytic cleavage sites in the alpha-chain, we have biosynthetically radiolabeled the transient forms, isolated these by immunoprecipitation, gel electrophoresis, and electroelution, and subjected them to automated Edman degradation. The position of the NH2-terminal amino acid was inferred from the elution cycle of the radioactive amino acid and the primary sequence encoded in the alpha-chain cDNA. The amino terminus of the precursor obtained by in vitro translation of SP6 alpha-chain mRNA in the presence of microsomes was leucine 23. The same amino terminus was found in precursor alpha-chain synthesized by normal human fibroblasts (IMR90) in a 1- or 3-h pulse or secreted by these cells in the presence of NH4Cl. The alpha-chain isolated after a 3-h pulse followed by a 5-h chase (intermediate form) included a mixture of molecular species of which the amino terminus was arginine 87 (most abundant), histidine 88, or leucine 90. After a 20-h chase (mature form) the latter species predominated. This mature form of the alpha-chain remained fully reactive with antibody raised against the carboxyl-terminal 15 amino acids, indicating little if any proteolysis at the carboxyl terminus. Thus synthesis and maturation of the alpha-chain of beta-hexosaminidase includes two major proteolytic cleavages: the first, between alanine 22 and leucine 23, removes the signal peptide to generate the precursor form, whereas the second occurs between the dibasic amino acids, lysine 86 and arginine 87. The second cleavage is followed by trimming of 3 additional amino acids to give the mature form of the alpha-chain.  相似文献   

11.
We have determined the complete sequence of the rat mitochondrial malate dehydrogenase (mMDH) precursor derived from nucleotide sequence of the cDNA. A single synthetic oligodeoxynucleotide probe was used to screen a rat atrial cDNA library constructed in lambda gt10. A 1.2 kb full-length cDNA clone provided the first complete amino acid sequence of pre-mMDH. The 1014 nucleotide-long open reading frame encodes the 314 residue long mature mMDH protein and a 24 amino acid NH2-terminal extension which directs mitochondrial import and is cleaved from the precursor after import to generate mature mMDH. The amino acid composition of the transit peptide is polar and basic. The pre-mMDH transit peptide shows marked homology with those of two other enzymes targeted to the rat mitochondrial matrix.  相似文献   

12.
Isovaleryl-CoA dehydrogenase (IVD) is a mitochondrial enzyme involved in leucine metabolism. Previous studies of fibroblasts from patients with isovaleric acidemia (IVA), an inherited defect in IVD, have revealed that IVD precursor protein produced by type II IVA cells is 3 kDa smaller than normal and is processed inefficiently to a mature form which is also 3 kDa smaller than normal. Using the polymerase chain reaction, we have identified a 90-base pair deletion encompassing bases 145-234 in type II IVD cDNA. This deletion is caused by an error in RNA splicing and predicts the in-frame deletion of 30 amino acids beginning with leucine 20 of the mature IVD. The rate of leader peptide cleavage by purified mitochondrial leader peptidases was similar for the variant and normal precursor IVDs expressed in vitro, and radiosequencing confirmed that both mature proteins contain identical amino termini. In vitro import studies showed that the efficiency of overall mitochondrial import of type II variant IVD precursor was approximately 30% of normal, as was its binding to the mitochondrial surface. Unlike its normal counterpart, the bound variant IVD precursor was readily released. These data suggest that binding of the variant protein to mitochondrial membrane receptors per se is hindered, resulting in the inefficient mitochondrial processing.  相似文献   

13.
Rat pre-prosomatostatin. Structure and processing by microsomal membranes   总被引:10,自引:0,他引:10  
The tetradecapeptide hormone somatostatin arises from proteolytic processing of a large precursor, pre-prosomatostatin. Studies of other hormone precursors predict that the NH2 terminus of pre-prosomatostatin comprises a leader, or signal, region which is cleaved during its translation. Such co-translational cleavage would generate prosomatostatin. In these studies, we present the complete sequence of rat pre-prosomatostatin, deduced from the nucleotide sequence of cDNAs derived from a somatostatin-rich medullary thyroid carcinoma. These findings indicate that rat pre-prosomatostatin contains 116 amino acids (12,737 daltons). Cell-free translations of medullary thyroid carcinoma mRNA with dog pancreas microsomal membranes were performed to identify the cleavage point of the leader region from prosomatostatin. Partial microsequencing data indicates that the cleavage occurs between the glycine and alanine at positions 24 and 25 of pre-prosomatostatin. Thus, rat prosomatostatin contains 92 amino acids (10,388 daltons). Comparison of the amino acid sequences of the rat and human pre-prosomatostatins reveals only four amino acid substitutions. In view of the high degree of homology between rat and human pre-prosomatostatin, we expect a similar cleavage site and NH2-terminal structure for human prosomatostatin. The high level of conservation between rodents and humans of the entire pre-prosomatostatin molecule further suggests the possibility of biologic functions of the NH2-terminal portions of prosomatostatin.  相似文献   

14.
A set of chimaeric precursors which contain the same leader sequences but different passenger proteins has been analyzed for the site of protease cleavage following import into yeast mitochondria. Each precursor comprises the leader of Neurospora crassa subunit 9 of mitochondrial ATP synthase fused to subunit 8 or 9 of the corresponding yeast enzyme. Precursors containing the first five residues of mature N. crassa subunit 9 interposed between the leader and the yeast passenger protein were cleaved at the natural site of the N. crassa subunit 9 precursor. Direct fusions without interposed sequences were cleaved at novel sites. Cleavage occurred between the 3rd and 4th residues of yeast subunit 8, but for yeast subunit 9, cleavage occurred within the leader, 8 residues upstream of the passenger protein.  相似文献   

15.
Many secreted and membrane proteins have amino-terminal leader peptides which are essential for their insertion across the membrane bilayer. These precursor proteins, whether from prokaryotic or eukaryotic sources, can be processed to their mature forms in vitro by bacterial leader peptidase. While different leader peptides have shared features, they do not share a unique sequence at the cleavage site. To examine the requirements for substrate recognition by leader peptidase, we have truncated M13 procoat, a membrane protein precursor, from both the amino- and carboxy-terminal ends with specific proteases or chemical cleavage agents. The fragments isolated from these reactions were assayed as substrates for leader peptidase. A 16 amino acid residue peptide which spans the leader peptidase cleavage site is accurately cleaved. Neither the basic amino-terminal region nor most of the hydrophobic central region of the leader peptide are essential for accurate cleavage.  相似文献   

16.
Excretion of the egl gene product of Pseudomonas solanacearum.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

17.
18.
The prepro-peptide of fungal aspartic proteinase, Mucor pusillus rennin, is useful as a secretion leader for efficient secretion of human growth hormone (HGH) from Saccharomyces cerevisiae. For secretion by yeast cells of HGH with the same NH2 terminus as native HGH, an artificial Lys-Arg linker, which is one of the potential KEX2 recognition sequences, was introduced at the junction between the M. pusillus rennin secretion leader and mature HGH. The HGH directed by this construction was the same size as native HGH, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and amino acid sequencing of its NH2 terminus revealed that the secretion leader peptide was removed correctly at the COOH-terminal side of the Lys-Arg linker. On the other hand, when the same plasmid was expressed in a kex2 mutant strain, unprocessed HGH of a higher molecular weight was secreted, indicating that no proteolytic cleavage at the Lys-Arg site occurred. These results clearly showed that the leader peptide with the Lys-Arg linker was recognized and specifically cleaved by the yeast KEX2 protease. The mature HGH purified from yeast culture medium was indistinguishable from native HGH in biological activity, determined by the adipocyte conversion assay, and in secondary structure, determined by circular dichroism spectroscopy.  相似文献   

19.
Yeast cytochrome c oxidase subunit IV (an imported mitochondrial protein) is made as a larger precursor with a transient pre-sequence of 25 amino acids. If this pre-sequence is fused to the amino terminus of mouse dihydrofolate reductase (a cytosolic protein) the resulting fusion protein is imported into the matrix space, and cleaved to a smaller size, by isolated yeast mitochondria. We have now fused progressively shorter amino-terminal segments of the subunit IV pre-sequence to dihydrofolate reductase and tested each fusion protein for import into the matrix space and cleavage by the matrix-located processing protease. The first 12 amino acids of the subunit IV pre-sequence were sufficient to direct dihydrofolate reductase into the mitochondrial matrix, both in vitro and in vivo. However, import of the corresponding fusion protein into the matrix was no longer accompanied by proteolytic processing. Fusion proteins containing fewer than nine amino-terminal residues from the subunit IV pre-piece were not imported into isolated mitochondria. The information for transporting attached mouse dihydrofolate reductase into mitochondria is thus contained within the first 12 amino acids of the subunit IV pre-sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号