首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Scutellosporites devonicus from the Early Devonian Rhynie chert is the only fossil glomeromycotan spore taxon known to produce a germination shield. This paper describes a second type of glomeromycotan spore with a germination shield from the Rhynie chert. In contrast to S. devonicus, however, these spores are acaulosporoid and develop laterally in the neck of the sporiferous saccule. Germination shield morphology varies, from plate-like with single or double lobes to tongue-shaped structures usually with infolded margins that are distally fringed or palmate. Spore walls are complex and appear to be constructed of at least three wall groups, the outermost of which includes the remains of the saccule. The complement of features displayed by the fossils suggests a relationship with the extant genera Ambispora, Otospora, Acaulospora or Archaeospora, but which of these is the closest extant relative cannot be determined. The acaulosporoid spores from the Rhynie chert document that this spore type was in existence already ∼400 mya, and thus contribute to a more complete understanding of the evolutionary history of the Glomeromycota. This discovery pushes back the evolutionary origin of all main glomeromycotan groups, revealing that they had evolved before rooted land plants had emerged.  相似文献   

2.
Abstract: The Lower Devonian Xujiachong Formation from the vicinity of Qujing City, Yunnan, China is interpreted as a terrestrial‐fluviatile‐lacustrine sequence. It contains important nonmarine biotas including plants, fish and invertebrates. The plants are particularly interesting as they include many endemic taxa. Dispersed spore assemblages have been recovered from the upper part of this formation. The spores are well preserved and of moderate thermal maturity. They are systematically described and four new species erected: Aneurospora xujiachongensis sp. nov., Chelinospora ouyangii sp. nov., Camptozonotriletes? luii sp. nov. and Leiozonospora xichongensis sp. nov. One new combination is proposed: Aneurospora conica (Ouyang and Lu) comb. nov. This is a rare report of a Lower Devonian dispersed spore assemblage from the South China Plate. Indeed, few dispersed spore assemblages of this age are known outside of Euramerica and Northern Gondwana. It is suggested that the Xujiachong Formation spore assemblages can all be equated to the polygonalisemsiensis Spore Assemblages Biozone (PE SAB) of Richardson and McGregor (1986) indicating an early (but not earliest) Pragian to ?earliest Emsian age. However, caution is urged, because biostratigraphical interpretation is difficult owing to distinct differences between dispersed spore assemblages from South China and Euramerica/Northern Gondwana. This almost certainly reflects palaeophytogeographical variation and regional endemism among early land plant floras on widely separated land masses. Palynofacies analysis supports a nonmarine origin for the deposits of the Xujiachong Formation, with the very rare marine palynomorphs that were encountered interpreted as reworked.  相似文献   

3.
Various types of other fungi colonize glomeromycotinan (Mucoromycota) spores in the Early Devonian Rhynie chert. However, relatively few of these associations have been described and evaluated in detail. One particular type of glomoid spore located in degrading land plant axes from the Rhynie chert provides evidence of (simultaneous) interaction with three different fungi. Massive callosities occur around the intrusion filaments of a chytrid-like parasite with epibiotic sporangia, while the hyphae of a delicate mycelial fungus extend into the spore lumen without triggering a recognizable host response. Several spores show large numbers of inwardly directed projections, which are regularly distributed and consist of a short hyphal branch encased in host wall material. The projections represent the penetration sites of a distinctive, mycelial fungus that forms a mantle-like hyphal sheath around the spores. This type of fungal interaction with glomeromycotinan spores has not previously been reported, and thus expands our knowledge of the numerous interfungal relationships that existed in early continental ecosystems.  相似文献   

4.
Siliceous hot spring deposits form at Earth's surface above terrestrial hydrothermal systems, which create low‐sulphidation epithermal mineral deposits deeper in the crust. Eruption of hot spring waters and precipitation of opal‐A create sinter apron complexes and areas of geothermally influenced wetland. These provide habitat for higher plants that may be preserved in situ, by encrustation of their surfaces and permineralization of tissues, creating T0 plant assemblages. In this study, we review the fossil record of hot spring floras from subfossil examples forming in active hot spring areas, via fossil examples from the Cenozoic, Mesozoic and Palaeozoic to the oldest known hot spring flora, the Lower Devonian Rhynie chert. We demonstrate that the well‐known megabias towards wetland plant preservation extends to hot spring floras. We highlight that the record of hot spring floras is dominated by plants preserved in situ by permineralization on geothermally influenced wetlands. Angiosperms (members of the Cyperaceae and Restionaceae) dominate Cenozoic floras. Equisetum and gleicheniaceous ferns colonized Mesozoic (Jurassic) geothermal wetlands and sphenophytes and herbaceous lycophytes late Palaeozoic examples. Evidence of the partitioning of wetland hydrophytic and dryland mesophytic communities, a feature of active geothermal areas, is provided by well‐preserved and well‐exposed fossil sinter apron complexes, which record flooding of dryland environments by thermal waters and decline of local forest ecosystems. Such observations from the fossil record back‐up hypotheses based on active hot springs and vegetation that suggest removal of taphonomic filtering in hot spring environments is accompanied by an increase in ecological and ecophysiological filtering. To this end we also demonstrate that in the hot spring environment, the wetland bias extends beyond broad ecology. We show that ecosystems preserved from the Cenozoic to the Mesozoic provide clear evidence that the dominant plants preserved in situ by hot spring activity are also halophytic, tolerant of high pH and high concentrations of heavy metals. By extension, we hypothesize that this is also the case in Palaeozoic hot spring settings and extended to the early land plant flora of the Rhynie chert.  相似文献   

5.
Glomeromycotan spores from the Lower Devonian Rhynie chert provide the first evidence for germination shields in fossil fungi and demonstrate that this complex mode of germination was in place in some fungi at least 400 million years ago. Moreover, they represent the first direct marker relative to the precise systematic position of an Early Devonian endomycorrhizal fungus. In extant fungi, germination shields occur exclusively in the genus Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae). These structures are regarded as a derived feature within the phylum Glomeromycota, and hence their presence in the Rhynie chert suggests that major diversification within this group of fungi occurred before the Early Devonian.Taxonomical novelties Scutellosporites Dotzler, M. Krings, T.N. Taylor and Agerer Scutellosporites devonicus Dotzler, M. Krings, T.N. Taylor and AgererStürmer 1998  相似文献   

6.
The Canterland Den locality in the Midland Valley of Scotland exposes sediments belonging to the Arbuthnott Group. They consist of typical Lower Old Red Sandstone terrestrial fluviatile deposits, which probably accumulated in an inland intermontane basin. Palynological investigation of these sediments has yielded diverse and well preserved palynomorph assemblages dominated by land-derived forms: spores, phytodebris (dispersed cuticles and tubular structures) and rare fragments of arthropod cuticle. Interestingly, rare acritarchs interpreted as deriving from non-marine algae are also present. The spore assemblages all belong to the lower subzone of the micrornatusnewportensis Spore Assemblage Biozone, indicating an early Lochkovian (Early Devonian) age. They are similar in general characteristics to previously described spore assemblages from the Arbuthnott Group, but exhibit minor differences in terms of taxon composition. They differ more significantly from coeval spore assemblages from the lowland floodplain deposits of the Anglo-Welsh basin, in terms of both relative abundance of morphotypes and taxon composition. An intriguing feature of the assemblage is the high abundance of undissociated spore tetrads. It is suggested that such tetrads are a genuine feature of Lochkovian spore assemblages, perhaps reflecting more flexible and unconventional reproductive strategies exhibited by early land plants.  相似文献   

7.
The Early Devonian Rhynie chert has been critical in documenting early land plant-fungal interactions. However, complex associations involving several fungi that enter into qualitatively different relationships with a single host plant and even interact with one another have not yet been detailed. Here, we studied petrographic thin sections of the Rhynie chert plant Nothia aphylla. Three fungal endophytes (co)occur in prostrate axes of this plant: narrow hyphae producing clusters of small spores; large spherical spores/zoosporangia; and wide aseptate hyphae that form intercellular vesicles in the cortex. Host responses on attack include bulging of infected rhizoids, formation of encasement layers around intracellular hyphae, and separation of infected from uninfected tissues by secondarily thickened cell walls. A complex simultaneous interaction of N. aphylla with three endophytic fungi was discovered. The host responses indicate that some of the mechanisms causing host responses in extant plants were in place 400 million yr ago. Anatomical and life history features of N. aphylla suggest that this plant may have been particularly susceptible to colonization by fungi.  相似文献   

8.
The book lungs of an exceptionally preserved fossil arachnid (Trigonotarbida) from the Early Devonian (approx. 410 Myr ago) Rhynie cherts of Scotland were studied using a non-destructive imaging technique. Our three-dimensional modelling of fine structures, based on assembling successive images made at different focal planes through the translucent chert matrix, revealed for the first time fossil trabeculae: tiny cuticular pillars separating adjacent lung lamellae and creating a permanent air space. Trabeculae thus show unequivocally that trigonotarbids were fully terrestrial and that the microanatomy of the earliest known lungs is indistinguishable from that in modern Arachnida. A recurrent controversy in arachnid evolution is whether the similarity between the book lungs of Pantetrapulmonata (i.e. spiders, trigonotarbids, etc.) and those of scorpions is a result of convergence. Drawing on comparative studies of extant taxa, we have identified explicit characters (trabeculae, spines on the lamellar edge) shared by living and fossil arachnid respiratory organs, which support the hypothesis that book lungs were derived from a single, common, presumably terrestrial, ancestor.  相似文献   

9.
Abstract Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles, that is, alternation of multicellular gametophytic and sporophytic generations. The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent, dominant sporophyte and a reduced gametophyte. The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories. The Antithetic Theory proposes a green algal ancestor with a gametophyte‐dominant haplobiontic life cycle. The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations. The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats. Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants. In recent years, exceptionally well‐preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian, 410 Ma), and the complete life cycle of several Rhynie chert plants has been reconstructed. All show an alternation of more or less isomorphic generations, which is currently accepted as the plesiomorphic condition among all early polysporangiophytes, including basal tracheophytes. Here we review the existing evidence for early embryophyte gametophytes. We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes. All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

10.
Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles,that is,alternation of multicellular gametophytic and sporophytic generations.The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent,dominant sporophyte and a reduced gametophyte.The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories.The Antithetic Theory proposes a green algal ancestor with a gametophyte-dominant haplobiontic life cycle.The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations.The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats.Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants.In recent years,exceptionally well-preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian,410 Ma),and the complete life cycle of several Rhynie chert plants has been reconstructed.All show an alternation of more or less isomorphic generations,which is currently accepted as the plesiomorphic condition among all early polysporangiophytes,including basal tracheophytes.Here we review the existing evidence for early embryophyte gametophytes.We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes.All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

11.
Several different chytridiomycetes are described from the Lower Devonian (Siegenian) Rhynie chert. Included are both eucarpic and apparently holocarpic forms that occur in Palaeonitella, Aglaophyton, Lyonophyton, Horneophyton, and clusters of algal cells, as well as in the surrounding chert matrix. Holocarpic types consist of endobiotic sporangia, each characterized by one discharge tube. Sporangia can be traced from the thallus stage to the discharge of zoospores. Monocentric and polycentric eucarpic chytrids are associated with the miospores of Aglaophyton and various thick-walled fungal spores. In these forms the sporangia are variable in size and shape ranging up to 30 μm. Most appear to be inoperculate and there is evidence that the sporangium ruptured on the distal surface. Some contain zoospores with flagella. One operculate eucarpic form had parasitized the cellular gametophyte emerging from the proximal surface of an Aglaophyton spore. Several of the Rhynie chert chytrids are comparable with a number of extant forms (e.g., Olpidiaceae and Spizellomycetaceae), while others possess features that encompass several groups. These fossil fungi are discussed in the context of their interactions with other organisms in this Lower Devonian freshwater paleoecosystem.  相似文献   

12.
Dispersed microfossils (spores and phytodebris) provide the earliest evidence for land plants. They are first reported from the Llanvirn (Mid-Ordovician). More or less identical assemblages occur from the Llanvirn (Mid-Ordovician) to the late Llandovery (Early Silurian), suggesting a period of relative stasis some 40 Myr in duration. Various lines of evidence suggest that these early dispersed microfossils derive from parent plants that were bryophyte-like if not in fact bryophytes. In the late Llandovery (late Early Silurian) there was a major change in the nature of dispersed spore assemblages as the separated products of dyads (hilate monads) and tetrads (trilete spores) became relatively abundant. The inception of trilete spores probably represents the appearance of vascular plants or their immediate progenitors. A little later in time, in the Wenlock (early Late Silurian), the earliest unequivocal land plant megafossils occur. They are represented by rhyniophytoids. It is only from the Late Silurian onwards that the microfossil/ megafossil record can be integrated and utilized in interpretation of the flora. Dispersed microfossils are preserved in vast numbers, in a variety of environments, and have a reasonable spatial and temporal fossil record. The fossil record of plant megafossils by comparison is poor and biased, with only a dozen or so known pre-Devonian assemblages. In this paper, the early land plant microfossil record, and its interpretation, are reviewed. New discoveries, novel techniques and fresh lines of inquiry are outlined and discussed.  相似文献   

13.
A small but diverse fossil flora is described from the Early Permian Taiyuan Formation occurring at the Yangshuling mine in Pingquan district of Hebei Province, northern China. Fossils occur as compression/impressions within mudrocks and fine-grained sandstones and also as carbonate permineralizations within volcaniclastic tuffs. All are fragmentary and contain lycopsids, sphenopsids, ferns and seed plants, and include several new species. In the compression assemblage sphenopsid and pteridosperm foliage accounts for the majority of the fossils recognised with only a few other kinds of plant organs present. In contrast, the permineralized assemblage is dominated by cordaitaleans with a composition similar to that occurring in coal-ball assemblages elsewhere in the Taiyuan Formation. From the taxonomic synthesis presented it is apparent that the Yangshuling permineralized assemblage contains many of the plant taxa diagnostic of the northern realm of the Early Permian Cathaysian flora, and preserves a representative sample of the wetland coal-swamp vegetation of this time. The permineralized assemblage at Yangshuling represents the first example of anatomically preserved plants from volcaniclastic lithologies from the Palaeozoic of China, raising the possibility of similarly preserved plant-fossil assemblages elsewhere in the Cathaysian realm.  相似文献   

14.
A fertile rhyniophytoid is discovered from the Lower Devonian of Guangxi, southwestern China, which is characterised by small size, dichotomous branchings and terminal sporangia. This plant is similar to the genus Aberlemnia Gonez et Gerrienne and also, is comparable to some mesofossil morphotypes of early land plants from the Early Devonian (Lochkovian) Old Red Sandstone floras. This study adds new data to the generally zosterophyll-dominated Early Devonian floras of South China and sheds some lights on the palaeophytogeography of rhyniophytoids.  相似文献   

15.
The 400 million-year-old Rhynie chert has provided a wealth of information about various types of fungal interactions that existed in this Early Devonian paleoecosystem. In this paper we report the first unequivocal evidence of a lichen symbiosis from the Rhynie chert. Specimens of a new genus, Winfrenatia, consist of a thallus of superimposed layers of aseptate hyphae and, on the upper surface, numerous uniform depressions. Extending into the base of each depression are hyphae that form a three-dimensional netlike structure. Enclosed within each of the net spaces is a coccoid cyanobacterium, each cell of which is surrounded by a thick sheath. These photobiont cells divide in three planes, resulting in cell clusters of up to perhaps 64 individuals. The photobiont is parasitized by the fungus in the base of each net as new cyanobacterial cells are formed distally. Reproduction is by endospores and soredia. Affinities of the mycobiont appear closest to members of the Zygomycetes, while the photobiont is most similar to coccoid cyanobacteria of the Gloeocapsa and Chroococcidiopsis types. We speculate that this cyanobacterial symbiosis was well adapted to exploit and colonize new ecological niches, especially in the periodically desiccated environment postulated for the Rhynie chert paleoecosystem.  相似文献   

16.
Several examples of mycoparasitism are described from the Lower Devonian (Siegenian) Rhynie chert. These fungal interactions include thick-walled chlamydospores and vesicles in which epibiotic fungi are attached to the outer surface of the spore. Other fossil spores are characterized by mycoparasites developing between the layers of the spore wall or within the lumen. The presence of callosities extending from the inner surface of some fossil spores demonstrates that the hosts were alive when parasitized. This response by the mycohost is identical to that found in certain modem mycoparasitic symbioses involving vesicular arbuscular mycorrhizae that are parasitized by various aquatic fungi. The presence of mycoparasitism in a 400-million-year-old ecosystem underscores the potential significance of the fungal genome early in the evolution of other organisms.  相似文献   

17.
A new basal land plant, Teruelia diezii gen. et sp. nov., is described from the shallow‐water marine deposits of the Lower Devonian (Lochkovian–Pragian) Nogueras Formation of the Iberian Peninsula (north Gondwana palaeocontinent). Teruelia is preserved as a compression fossil and consists of isotomously branched, robust stems terminated in large, fusiform, twisted sporangia. This morphology suggests that Teruelia is very probably equivalent to Aglaophyton, a permineralized early polysporangiophyte known up to now only from the Lower Devonian (early Pragian to ?earliest Emsian) Rhynie Chert in Scotland (Laurussia palaeocontinent), which represents an early terrestrial hot‐spring ecosystem. Accepted phylogenies identify Aglaophyton as sister to vascular plants. Our phylogeny‐based results identify the Aglaophyton/Teruelia biological entity (i.e. Aglaophyton anatomical characters plus Teruelia external morphology) as the most direct vascular plant precursor. It shows that at least one Rhynie Chert type plant had a much wider distribution than previously known and suggests that Aglaophyton was not restricted to hydrothermal environments, unlike other Rhynie Chert plants.  相似文献   

18.
The opening of the Paleo-Tethys are reconstructed, including the depositional setting and redox conditions, based on an analysis of radiolarian fossils and the geochemistry of a Devonian siliceous succession in the Chiang Dao area of northern Thailand. The succession is subdivided into the following five rock types (in ascending stratigraphic order): black shale (Lower Devonian), siliceous shale (Middle Devonian), tuffaceous chert and tuff (Middle/Upper Devonian), and chert (Upper Devonian). The succession was deposited in continental margin and pelagic environments between the Sibumasu Block and the Indochina-North China blocks. The concentrations of terrestrial-derived elements (Al2O3, TiO2, Rb, and Zr) suggest that the succession (except for the chert) was supplied with terrigenous material and volcanic ash from the adjacent continent, deposited within a SiO2-rich environment. Geochemical indicators of redox conditions (total organic carbon and the Th/U ratio) reveal a gradual change from anoxic to oxic oceanic conditions between the black shale and chert. Taking into account the interpreted depositional setting and redox conditions, the initial Paleo-Tethys developed as a small, closed anoxic-suboxic oceanic basin during the Early to Middle Devonian, located close to the continental margin. Black shale and siliceous shale were deposited in the basin at this time. Opening of the Paleo-Tethys started around the Middle and Upper Devonian boundary, marked by voluminous volcanic activity. The tuffaceous chert was deposited under oxic conditions, suggesting that ash and pumice within the chert were derived from a continental source. After the Late Devonian, the Paleo-Tethys developed as a deep, broad ocean in which pelagic chert was deposited.  相似文献   

19.
《Mycological Research》2006,110(6):628-632
A new microfungus, Hassiella monospora gen. et sp. nov., consisting of coenocytic hyphae is associated with degraded plant material in the Early Devonian silicified Rhynie chert ecosystem. Some hyphae produce small bulb-like projections that subsequently develop into spherical, thick-walled and highly ornamented reproductive structures. Mature reproductive structures are characterized by a prominent, funnel-shaped appendage that is interpreted as an amphigynous antheridium. When combined, these features are suggestive of the oogonia/oosporangia in certain extant members of the Peronosporomycetes (Oomycota).  相似文献   

20.
Lower Old Red Sandstone deposits penetrated by a series of cored boreholes near Newport (South Wales) have been sedimentologically logged, and recovered plant assemblages (microfossil and megafossil) investigated. Sedimentological logging indicates that the deposits are typical of the extensive terrestrial-fluviatile floodplain deposits of the Anglo-Welsh Basin. Palynomorph assemblages have been recovered from a number of horizons and comprise entirely terrestrial forms (spores and phytodebris). They essentially represent a single assemblage, belonging to the middle subzone of the micrornatus-newportensis sporomorph assemblage biozone, and indicate an Early Devonian (mid-Lochkovian) age. The new biostratigraphical data enables correlation with other Lower Old Red Sandstone deposits of the Anglo-Welsh Basin, and the deposits are assigned to the lower part of the St. Maughan's Group. A plant megafossil/mesofossil assemblage recovered from one of the spore-bearing horizons includes a zosterophyll assigned to Zosterophyllum cf. fertile. This is the earliest reported zosterophyll from the Anglo-Welsh Basin. The new palynological/palaeobotanical data provide important information on the palaeoecology and palaeobiogeography of the vegetation of the southeastern margin of the Old Red Sandstone continent during Lochkovian times. Palaeogeographical variation in the distribution of plant microfossils and megafossils is interpreted as reflecting differences between the flora of the lowland floodplain and inland intermontaine basins, although this is to a certain extent overprinted by variation due to localized differences in environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号