首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a simple, direct, physical assay to detect genetic recombination of bacteriophage T7 DNA in vitro. In this assay two mature T7 DNA molecules, each having a unique restriction enzyme site, are incubated in the presence of a cell-free extract from T7-infected Escherichia coli cells. After extraction of the DNA, restriction enzyme digestion, and agarose gel electrophoresis, genetic recombination is detected by the appearance of a novel recombinant DNA band. Recombination frequencies as high as 13% have been observed. We used this assay to determine the genetic requirements for in vitro recombination. In agreement with results obtained previously with a biological assay, T7 recombination in vitro appears to proceed via two distinct pathways.  相似文献   

2.
A double-strand break in a bacteriophage T7 genome significantly reduced the ability of that DNA to produce viable phage when the DNA was incubated in an in vitro DNA replication and packaging system. When a homologous piece of T7 DNA (either a restriction fragment or T7 DNA cloned into a plasmid) that was by itself unable to form a complete phage was included in the reaction, the break was repaired to the extent that many more viable phage were produced. Moreover, repair could be completed even when a gap of about 900 nucleotides was put in the genome by two nearby restriction cuts. The repair was accompanied by acquisition of a genetic marker that was present only on the restriction fragment or on the T7 DNA cloned into a plasmid. These data are interpreted in light of the double-strand gap repair mode of recombination.  相似文献   

3.
At high multiplication of infection, a substantial fraction of restricting cells (P1 lysogens) could be productively infected by unmodified coliphage T1 (T1.0) provided that protein synthesis was uninhibited during the first 5 min of infection. Successful infection under restricting conditions was accompanied by more genetic recombination than was seen under nonrestricting host, the recombination frequency declined for markers on T1.0 genomes; no effect was seen on recombination between markers on modified (T1.P) genomes. This suggested that recombination between unmodified genomes may be essential for their survival under conditions of host restriction. In a restricting host, genetic markers on T1.0 could recombine with T1.P even when the rescuing phage was added 6 min after T1.0 infection. However, even marker rescue recombination was diminished when protein synthesis was inhibited during early infection. Since DNA restriction is an early event, protein synthesis may be required soon after infection of a restricting host by T1.0 in order to preserve restriction-damaged DNA in a form that can participate in recombination. Experiments are also described that rule out some possibilities for the role of such a protein(s).  相似文献   

4.
Genetic and physical mapping in the early region of bacteriophage T7 DNA.   总被引:14,自引:0,他引:14  
A detailed physical map of the early region of bacteriophage T7 DNA has been constructed. This map contains: locations for all the cuts made by the restriction endonucleases HindII, HpaII, HaeIII and HaeII, and many of the cuts by HhaI; the approximate end points for each of 61 different deletions; initiation sites and the termination site for RNAs made by Escherichia coli RNA polymerase; an initiation site for RNA made by T7 RNA polymerase; the five primary RNase III cleavage sites of the early region; and the coding sequences for perhaps nine different early proteins. Virtually all of the non-overlapping coding capacity of the five early messenger RNAs is used, except for untranslated stretches of perhaps 30 or so nucleotides at the ends. It seems likely that each of the nine early proteins is made from its own ribosome-binding and initiation site. The mapped restriction cuts provide fixed reference points, and allow DNA fragments containing specific genetic signals to be identified and isolated.The nucleotide sequences around the ends of three different T7 deletions have been determined. Each deletion eliminated a segment of DNA between repeated sequences of seven, eight or ten base-pairs, located 578 to 2100 base-pairs apart in the wild-type sequence. In each case, one copy of the repeated sequence was retained in the deletion mutant. This is consistent with the deletions having arisen by a genetic crossover between the repeated sequences. The approximate frequency of genetic recombination per base-pair has been estimated within two early genes; in both cases, the value was close to 0.01% recombination per base-pair, consistent with the value expected from the total length of the T7 genetic map. Genetic recombination between non-overlapping deletions appears to be severely depressed when the distance between the deletions is closer than about 40 to 50 base-pairs, but recombination between a point mutation and a deletion does not appear to be similarly depressed. This suggests that efficient genetic recombination in T7 may require a base-paired “synapse” of some minimum size between the recombining DNA molecules.  相似文献   

5.
In Vitro Repair of Gaps in Bacteriophage T7 DNA   总被引:1,自引:1,他引:0       下载免费PDF全文
An in vitro system based upon extracts of Escherichia coli infected with bacteriophage T7 was used to study the mechanism of double-strand break repair. Double-strand breaks were placed in T7 genomes by cutting with a restriction endonuclease which recognizes a unique site in the T7 genome. These molecules were allowed to repair under conditions where the double-strand break could be healed by (i) direct joining of the two partial genomes resulting from the break, (ii) annealing of complementary versions of 17-bp sequences repeated on either side of the break, or (iii) recombination with intact T7 DNA molecules. The data show that while direct joining and single-strand annealing contributed to repair of double-strand breaks, these mechanisms made only minor contributions. The efficiency of repair was greatly enhanced when DNA molecules that bridge the region of the double-strand break (referred to as donor DNA) were provided in the reaction mixtures. Moreover, in the presence of the donor DNA most of the repaired molecules acquired genetic markers from the donor DNA, implying that recombination between the DNA molecules was instrumental in repairing the break. Double-strand break repair in this system is highly efficient, with more than 50% of the broken molecules being repaired within 30 min under some experimental conditions. Gaps of 1,600 nucleotides were repaired nearly as well as simple double-strand breaks. Perfect homology between the DNA sequence near the break site and the donor DNA resulted in minor (twofold) improvement in the efficiency of repair. However, double-strand break repair was still highly efficient when there were inhomogeneities between the ends created by the double-strand break and the T7 genome or between the ends of the donor DNA molecules and the genome. The distance between the double-strand break and the ends of the donor DNA molecule was critical to the repair efficiency. The data argue that ends of DNA molecules formed by double-strand breaks are typically digested by between 150 and 500 nucleotides to form a gap that is subsequently repaired by recombination with other DNA molecules present in the same reaction mixture or infected cell.  相似文献   

6.
During the infection of Escherichia coli by bacteriophage T7, there is a gradual conversion of host DNA to T7 DNA. Recombination and replication occur during this time. We have devised a new way of examining the physical structures of the intermediates of these processes. It is based on the observation that there are no sites in T7 DNA susceptible to cleavage by the restriction endonuclease EcoRI. E. coli DNA, on the other hand, is susceptible to degradation by EcoRI. Thus, phage and host DNA can be separated by sucrose gradient centrifugation after treatment with EcoRI. Concatemeric T7 DNA contains a high proportion of branched, gapped, and whiskered structures. These appear to be intermediates of replication and recombination. This approach also monitors the conversion process from host to T7 DNA.  相似文献   

7.
Abstract The diversity of resolvase ( tnpR ) genes carried by a number of mercury resistant soil bacteria has been investigated by DNA sequencing. The resulting DNA sequence information was compared to previously published tnp R. DNA sequences and to previously published restriction fragment length polymorphism (RFLP) data, permitting the relationships between DNA sequencing and RFLP approaches to be studied by the use of phylogenetic trees. DNA maximum likelihood and DNA parsimony were used to construct a variety of phylogenetic trees. DNA sequencing confirmed the validity of RFLP analysis and highlighted the importance of restriction endonuclease choice upon the resulting RFLP patterns and dendrogram topology. The tnp R genes of two previously uncharacterised mercury resistant bacteria, T2–7 and T2–12 were also studied. DNA sequence data placed T2–7 in a previously described gene class, tnp R-D and T2–12 in a new gene class, tnp R-F. The significance of this data with respect to the recombination and evolution events occurring within bacterial populations are discussed.  相似文献   

8.
Reciprocal recombination between T4 DNA cloned in plasmid pBR322 and homologous sequences in bacteriophage T4 genomes leads to integration of complete plasmid molecules into phage genomes. Indirect evidence of this integration comes from two kinds of experiments. Packaging of pBR322 DNA into mature phage particles can be detected by a DNA--DNA hybridization assay only when a T4 restriction fragment is cloned in the plasmid. The density of the pBR322 DNA synthesized after phage infection is also consistent with integration of plasmid vector DNA into vegetative phage genomes. Direct evidence of plasmid integration into phage genomes in the region of DNA homology comes from genetic and biochemical analysis of cytosine-containing DNA isolated from mature phage particles. Agarose gel electrophoresis of restriction endonuclease-digested DNA, followed by Southern blot analysis with nick-translated probes, shows that entire plasmid molecules become integrated into phage genomes in the region of T4 DNA homology. In addition, this analysis shows that genomes containing multiple copies of complete plasmid molecules are also formed. Among phage particles containing at least one integrated copy, the average number of integrated plasmid molecules is almost ten. A cloning experiment done with restricted DNA confirms these conclusions and illustrates a method for walking along the T4 genome.  相似文献   

9.
Cytosine-substituted phage T4 DNA (T4dC DNA) was demonstrated to be a splendid substrate for the assay of restriction endonucleases by agarose gel electrophoresis. For preparing those which cleave lambda phage DNA at few sites, T4dC DNA having appreciable number of cleavage sites was especially useful. As typical examples SalI and XbaI restriction endonucleases were chosen and an advantage of T4dC DNA for the enzyme unit determination was described. Screening of new restriction endonucleases from Streptomyces strains was facilitated by using T4dC DNA as a substrate for the assay.  相似文献   

10.
The DNA of bacteriophage T3 was characterized by cleavage with seven restriction endonucleases. AvaI, XbaI, BglII, and HindIII each cut T3 DNA at 1 site, KpnI cleaved it at 2 sites, MboI cleaved it at 9 sites, and HpaI cleaved it at 17 sites. The sizes of the fragments produced by digestion with these enzymes were determined by using restriction fragments of T7 DNA as molecular weight standards. As a result of this analysis, the size of T3 DNA was estimated to be 38.74 kilobases. The fragments were ordered with respect to each other and to the genetic map to produce a restriction map of T3 DNA. The location and occurrence of the restriction sites in T3 DNA are compared with those in the DNA of the closely related bacteriophage T7.  相似文献   

11.
After treatment with methyl or ethyl methane sulfonate, T7 amber mutants display a reduced capacity for recombination. Moreover, alkylation reduces recombination frequency involving markers on the right-hand side of the genetic map more than it reduces recombination frequency involving markers on the left-hand side. We interpret this to mean that alkylation can stop DNA injection at any point along the DNA molecule, and that T7 phage injects its DNA in a unique fashion starting from the end carrying the genes for early proteins.  相似文献   

12.
The role of T7-induced exonuclease (gene 6) in molecular recombination was studied by examining the fate of parental DNA during parental-to-progeny recombination. The method used was to compare infections with T7(+), T7am-6-233 (am gene 6), or T7ts6-136 (ts gene 6) under permissive and nonpermissive conditions. CsCl density gradient analysis of replicative DNA indicated that T7 exonuclease is necessary for recombination to occur, i.e., in the absence of the exonuclease the parental DNA replicated continuously as a hybrid molecule and did not recombine. Further studies under conditions where replicative DNA was denatured and analyzed by CsCl density gradient centrifugation indicated that the exonuclease is also needed for a limited amount of covalent repair of recombinants. A repair function for the T7-induced exonuclease is also suggested by results obtained from alkaline sucrose gradient analysis of replicative DNA. Under conditions nonpermissive for the exonuclease, discontinuities in the DNA accumulated during infection by T7am6-233 or by T7ts6-136.  相似文献   

13.
A system capable of in vitro packaging of exogenous bacteriophage T7 DNA has been used to monitor the biological activity of DNA replicated in vitro. This system has been used to follow the effects of UV radiation on in vitro replication and recombination. During the in vitro replication process, a considerable exchange of genetic information occurs between T7 DNA molecules present in the reaction mixture. This in vitro recombination is reflected in the genotype of the T7 phage produced after in vitro encapsulation; depending on the genetic markers selected, recombinants can comprise nearly 20% of the total phage production. When UV-irradiated DNA is incubated in this system, the amount of in vitro synthesis is reduced and the total amount of viable phage produced after in vitro packaging is diminished. In vitro recombination rates are also lower when the participating DNA molecules have been exposed to UV. However, biochemical and genetic measurements confirmed that there is little or no transfer of pyrimidine dimers from irradiated DNA into undamaged molecules.  相似文献   

14.
In order to isolate cDNA clones for DNA-binding components of the V-(D)-J recombinase, phage libraries from a pre-B-cell line were screened with a radiolabeled probe containing recombination signal sequences (RSS). Among prospective clones, cDNA T160 was analyzed further. It produced a protein of 80.6 kDa which bound to DNA containing RSS but not to DNA in which the RSS had been mutated. A search of a data base revealed that the T160 protein has significant sequence homology (56%) to the nonhistone chromosomal protein HMG1 within the C-terminal region of 80 amino acids. DNA-binding analysis with truncated proteins showed that the HMG homology region is responsible for DNA binding. Using restriction fragment length polymorphisms, the T160 gene was mapped at the proximal end of mouse chromosome 2. Evidence was obtained for genetic linkage between the T160 gene and the recombination activator genes RAG-1 and RAG-2.  相似文献   

15.
Microsatellites, or short tandem repeats, are abundant across genomes of most organisms. It is evident that the most straightforward and conclusive way of studying mutations in microsatellite-containing loci is to use clonally transmitted genomes or DNA sequences inherited in multigeneration pedigrees. At present, little is known about the origin of genetic variation in species that lack effective genetic recombination. DNA fingerprinting in 43 families of the parthenogenetic lizard species Darevskia armeniaca (131 siblings), using (GACA)(4), (GGCA)(4), (GATA)(4), and (CAC)(5) probes, revealed mutant fingerprints in siblings that differed from their mothers in several restriction DNA fragments. In some cases, the mutant fingerprints detected in siblings were also found in population samples. The mutation rate for new restriction fragment length estimated by using multilocus probes varied from 0.8 x 10(-2) to 4.9 x 10(-2) per band/per sibling. Probably, the most variations detected as restriction fragment length polymorphism have germ-line origin, but somatic changes of (CAC)(n) fingerprints in adult lizards were also observed. These results provide new evidence of existing unstable regions in genomes of parthenogenetic vertebrate animals, which provide genetic variation in unisexual populations.  相似文献   

16.
Illegitimate (non-homologous) recombination requires little or no sequence homology between recombining DNAs and has been regarded as being a process distinct from homologous recombination, which requires a long stretch of homology between recombining DNAs. However, we have found a type of illegitimate recombination that requires an interaction between long homologous DNA sequences. It was detected when a plasmid that carried 2-kb-long inverted repeats was subjected to type I (EcoKI) restriction in vivo within a special mutant strain of Escherichia coli. In the present work, we analyzed genetic requirements for this type of illegitimate recombination in well-defined genetic backgrounds. Our analysis demonstrated dependence on RecA function and on the presence of two EcoKI sites on the substrate DNA. These results are in harmony with a model in which EcoKI restriction enzyme attacks an intermediate of homologous recombination to divert it to illegitimate recombination.  相似文献   

17.
The yeast 2-micron circle plasmid encodes a protein, FLP, that mediates site-specific recombination across the two FLP-binding sites of the plasmid. We have used a novel technique, "exonuclease-treated substrate analysis," to determine the minimal duplex DNA sequence needed for this recombination event. A linear DNA containing two FLP sites in a direct orientation was treated with the double-strand specific 3'-exonuclease, exonuclease III, to generate molecules with a nested set of single-strand deletions that extended into one of the FLP sites. The DNA was then end-labeled at the sites of the deletions and used as a substrate for recombination in vitro. FLP-mediated recombination between two FLP sites excised a restriction endonuclease cleavage site from the DNA. Comparison of the fragments produced by restriction enzyme digestion of untreated and FLP-treated DNA showed to the nucleotide the duplex DNA sequence required for FLP-mediated recombination. To examine essential sequences in the opposite DNA strand, similar experiments were done using the 5'-exonuclease encoded by phage T7. The minimal essential duplex DNA sequence lies within the region of the FLP site that was previously shown to be protected from nuclease digestion in the presence of FLP. A modified form of this technique can be used to study the minimal sequence requirements of site-specific DNA binding proteins.  相似文献   

18.
Genetic analysis reported here shows that bacteriophage T7 exonuclease (gene 6) is necessary for intragenic and intergenic recombination in several areas of the T7 genetic map. This supports our previous conclusion (Lee & Miller, 1974) that the enzyme is necessary for T7 molecular recombination.Results of sucrose gradient analysis show that DNA concatemers are formed when both the T7 exonuclease (gene 6) and the T7 endonuclease (gene 3) are absent. Further results show that concatemers cannot be maintained in the absence of the exonuclease unless the endonuclease is also eliminated. Therefore, concatemers are formed by a process other than normal phage recombination. Selective defects in the recombination system do interfere with the stability of concatemers, however.  相似文献   

19.
Density transfer and shearing experiments show that the bacteriophage T7 endonuclease (gene 3) is necessary for the dispersion of parental DNA in the newly replicated DNA. These experiments on parental to progeny recombination support previous genetic data (Powling & Knippers, 1974; Kerr & Sadowski, 1975) that the gene 3 protein is essential for T7 recombination. Concatemers containing the newly replicated DNA have been sheared to the size of mature phage DNA and also to quarter molecules. In the presence of gene 3 protein, parental DNA and newly replicated DNA are interspersed. In the absence of gene 3 protein, the parental strand of each sheared DNA molecule is usually found intact.  相似文献   

20.
两种pUC18高效T载体的构建   总被引:1,自引:0,他引:1  
T载体是用于直接克隆PCR产物的线性载体.在此之前,克隆PCR片段时一般先用Klenow片段酶或T4DNA聚合酶削平PCR产物两端,克隆过程中又大都不能使用碱性磷酸酶为载体片段脱磷,因为绝大多数PCR引物5’端未磷酸化,T载体的诞生使分子生物学工作者摆脱了这一窘境,而且,T载体的3’端突出的T碱基与PCR产物3’端由于Taq酶非模板依赖的末端转移酶活性而添加的A碱基[1]互补,使载体与PCR产物的连接效率大大提高.由于具有上述优点,T载体从一产生就引起人们极大的兴趣,很多公司也相继推出了各自的T载体系统,并运用该技术改造了很多传统载体.本…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号