首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Golden BL 《Biochemistry》2011,50(44):9424-9433
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.  相似文献   

2.
The hairpin ribozyme   总被引:4,自引:0,他引:4  
The hairpin ribozyme is a member of a family of small RNA endonucleases, which includes hammer-head, human hepatitis delta virus, Neurospora VS, and the lead-dependent catalytic RNAs. All these catalytic RNAs reversibly cleave the phosphodiester bond of substrate RNA to generate 5'-hydroxyl and 2',3'-cyclic phosphate termini. Whereas the reaction products from family members are similar, large structural and mechanistic differences exist. Structurally the hairpin ribozyme has two principal domains that interact to facilitate catalysis. The hairpin ribozyme uses a catalytic mechanism that does not require metals for cleavage or ligation of substrate RNA. In this regard it is presently unique among RNA catalysts. Targeting rules for cleavage of substrate have been determined and required bases for catalysis have been identified. The hairpin ribozyme has been developed and used for gene therapy and was the first ribozyme to be approved for human clinical trials.  相似文献   

3.
A self-cleaving RNA sequence from hepatitis delta virus was modified to produce a ribozyme capable of catalyzing the cleavage of RNA in an intermolecular (trans) reaction. The delta-derived ribozyme cleaved substrate RNA at a specific site, and the sequence specificity could be altered with mutations in the region of the ribozyme proposed to base pair with the substrate. A substrate target size of approximately 8 nucleotides in length was identified. Octanucleotides containing a single ribonucleotide immediately 5' to the cleavage site were substrates for cleavage, and cleavage activity was significantly reduced only with a guanine base at that position. A deoxyribose 5' to the cleavage site blocked the reaction. These data are consistent with a proposed secondary structure for the self-cleaving form of the hepatitis delta virus ribozyme in which a duplex forms with sequences 3' to the cleavage site, and they support a proposed mechanism in which cleavage involves attack on the phosphorus at the cleavage site by the adjacent 2'-hydroxyl group.  相似文献   

4.
The use of deoxyribonucleotide substitution in RNA (mixed RNA/DNA polymers) permits an evaluation of the role of 2'-hydroxyl groups in ribozyme catalysis. Specific deoxyribonucleotide substitution at G9 and A13 of the ribozyme decreases the catalytic activity (kcat) of the ribozyme by factors of 14 and 20, respectively. The reduction of the reaction rate concomitant with the absence of these 2'-OHs or the 2'-OH of the substrate U7 position can be partially compensated by increasing the Mg2+ concentration above 10 mM. The KMg of the all-RNA ribozyme is 5.3 mM, and the lack of either of the three influential 2'-OHs increases this value by a factor of approximately 3. These and other reaction constants for the ribozyme and the deoxy-substituted analogues have been determined by assuming a three-step mechanism. The data presented here provide the basis for the formulation of a molecular model of ribozyme activity.  相似文献   

5.
Shih Ih  Been MD 《The EMBO journal》2001,20(17):4884-4891
Hepatitis delta virus (HDV) ribozymes employ multiple catalytic strategies to achieve overall rate enhancement of RNA cleavage. These strategies include general acid-base catalysis by a cytosine side chain and involvement of divalent metal ions. Here we used a trans-acting form of the antigenomic ribozyme to examine the contribution of the 5' sequence in the substrate to HDV ribozyme catalysis. The cleavage rate constants increased for substrates with 5' sequence alterations that reduced ground-state binding to the ribozyme. Quantitatively, a plot of activation free energy of chemical conversion versus Gibb's free energy of substrate binding revealed a linear relationship with a slope of -1. This relationship is consistent with a model in which components of the substrate immediately 5' to the cleavage site in the HDV ribozyme-substrate complex destabilize ground-state binding. The intrinsic binding energy derived from the ground-state destabilization could contribute up to 2 kcal/mol toward the total 8.5 kcal/mol reduction in activation free energy for RNA cleavage catalyzed by the HDV ribozyme.  相似文献   

6.
Caged RNA: photo-control of a ribozyme reaction.   总被引:3,自引:2,他引:1       下载免费PDF全文
We report here the first photo-chemical control of a ribozyme reaction by the site-specific modification of the 2'-hydroxyl nucleophile in the hammerhead system with a caging functionality. Rapid laser photolysis of the O-(2-nitrobenzyl) caging group initiates an efficient and accurate hammerhead-catalyzed cleavage of substrate RNA under native conditions. RNAs in which reactive functionalities or recognition elements are caged in this manner will be useful tools to probe RNA reactivity and dynamics.  相似文献   

7.
8.
Catalysis by the hairpin ribozyme is stimulated by a wide range of both simple and complex metallic and organic cations. This independence from divalent metal ion binding unequivocally excludes inner-sphere coordination to RNA as an obligatory role for metal ions in catalysis. Hence, the hairpin ribozyme is a unique model to study the role of outer-sphere coordinated cations in folding of a catalytically functional RNA structure. Here, we demonstrate that micromolar concentrations of a deprotonated aqueous complex of the lanthanide metal ion terbium(III), Tb(OH)(aq)(2+), reversibly inhibit the ribozyme by competing for a crucial, yet non-selective cation binding site. Tb(OH)(aq)(2+) also reports a likely location of this binding site through backbone hydrolysis, and permits the analysis of metal binding through sensitized luminescence. We propose that the critical cation-binding site is located at a position within the catalytic core that displays an appropriately-sized pocket and a high negative charge density. We show that cationic occupancy of this site is required for tertiary folding and catalysis, yet the site can be productively occupied by a wide variety of cations. It is striking that micromolar Tb(OH)(aq)(2+) concentrations are compatible with tertiary folding, yet interfere with catalysis. The motif implicated here in cation-binding has also been found to organize the structure of multi-helix loops in evolutionary ancient ribosomal RNAs. Our findings, therefore, illuminate general principles of non-selective outer-sphere cation binding in RNA structure and function that may have prevailed in primitive ribozymes of an early "RNA world".  相似文献   

9.
The hairpin ribozyme reversibly cleaves phosphodiesters of RNA substrates to generate products with 5' hydroxyl and 2',3'-cyclic phosphate termini. We previously found that the rate constant for ligation is tenfold faster than the rate constant for cleavage under standard conditions. The hammerhead ribozyme catalyzes the same reactions but is reported to favor cleavage relative to ligation by more than 100-fold under the same conditions. To explore the basis for this difference, we examined the influence of temperature, ions and pH on the hairpin ribozyme internal equilibrium. Under the same conditions, the loss of entropy associated with ligation is less for the hairpin than for the hammerhead ribozyme, consistent with the notion that a more rigid hairpin structure undergoes a smaller decrease in dynamics upon ligation than the more flexible hammerhead structure. Increased salt and reduced temperature shift the equilibrium toward ligation while pH has little effect, suggesting that conditions that stabilize RNA structure tend to promote ligation. The hairpin ribozyme appears to take up at least one tri- or divalent cation or two monovalent cations upon ligation. The efficiency with which different cations promote ligation depends strongly on valence and, less strongly, on ionic radius or electronegativity. This pattern of cation selectivity suggests that cations promote ligation through delocalized electrostatic shielding, perhaps interacting with a region of especially high charge density in the ligated ribozyme. Changes in ionic conditions produce large but compensating changes in enthalpy and entropy for cleavage and ligation. Thus, in addition to any increase in ribozyme dynamics associated with cleavage, re-organization of associated cations contributes significantly to hairpin ribozyme thermodynamics.  相似文献   

10.
In the presence of magnesium ions, cleavage by the hammerhead ribozyme RNA at a specific residue leads to 2'3'-cyclic phosphate and 5'-OH extremities. In the cleavage reaction an activated ribose 2'-hydroxyl group attacks its attached 3'-phosphate. Molecular dynamics simulations of the crystal structure of the hammerhead ribozyme, obtained after flash-freezing of crystals under conditions where the ribozyme is active, provide evidence that a mu-bridging OH-ion is located between two Mg2+ions close to the cleavable phosphate. Constrained simulations show further that a flip from the C3'- endo to the C2'- endo conformation of the ribose at the cleavable phosphate brings the 2'-hydroxyl in proximity to both the attacked phosphorous atom and the mu-bridging OH-ion. Thus, the simulations lead to a detailed new insight into the mechanism of hammerhead ribozyme cleavage where a mu-hydroxo bridged magnesium cluster, located on the deep groove side, provides an OH-ion that is able to activate the 2'-hydroxyl nucleophile after a minor and localized conformational change in the RNA.  相似文献   

11.
The hairpin ribozyme (HPR) is a naturally existing RNA that catalyzes site-specific RNA cleavage and ligation. At 37 degrees C and in the presence of divalent metal ions (M(2+)), the HPR efficiently cleaves RNA substrates in trans. Here, we show that the HPR can catalyze efficient M(2+)-independent ligation in trans in aqueous solutions containing any of several alcohols, including methanol, ethanol, and isopropanol, and millimolar concentrations of monovalent cations. Ligation proceeds most efficiently in 60% isopropanol at 37 degrees C, whereas the reverse (cleavage) reaction is negligible under these conditions. We suggest that dehydration of the RNA is the key factor promoting HPR activity in water- alcohol solutions. Alcohol-induced ribozyme ligation may have practical applications.  相似文献   

12.
Brooks KM  Hampel KJ 《Biochemistry》2011,50(13):2424-2433
The glmS ribozyme is a conserved riboswitch found in numerous Gram-positive bacteria and responds to the cellular concentrations of glucosamine 6-phosphate (GlcN6P). GlcN6P binding promotes site-specific self-cleavage in the 5' UTR of the glmS mRNA, resulting in downregulation of gene expression. The glmS ribozyme has previously been shown to lack strong cation specificity when the rate-limiting folding step of the cleavage reaction pathway is measured. This does not provide data regarding cation and ligand specificities of the glmS ribozyme during the rapid ligand binding chemical catalysis events. Prefolding of the ribozyme in Mg(2+)-containing buffers effectively isolates the rapid ligand binding and catalytic events (k(obs) > 60 min(-1)) from rate-limiting folding (k(obs) < 4 min(-1)). Here we employ this experimental design to assay the cations and ligand requirements for rapid ligand binding and catalysis. We show that molar concentrations of monovalent cations are also capable of inducing the formation of the native GlcN6P binding structure but are unable to promote ligand binding and catalysis rates of >4 min(-1). Our data show that the sole obligatory role for divalent cations, for which there is crystallographic evidence, is coordination of the phosphate moiety of GlcN6P in the ligand-binding pocket. In further support of this hypothesis, our data show that a nonphosphorylated analogue of GlcN6P, glucosamine, is unable to promote rapid ligand binding and catalysis in the presence of divalent cations. Folding of the ribozyme is, therefore, relatively independent of cation identity, but the rapid initiation of catalysis upon the addition of ligand is stricter.  相似文献   

13.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

14.
Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.  相似文献   

15.
D Herschlag 《Biochemistry》1992,31(5):1386-1399
J1/2 of the Tetrahymena ribozyme, a sequence of three A residues, connects the RNA-binding site to the catalytic core. Addition or deletion of bases from J1/2 improves turnover and substrate specificity in the site-specific endonuclease reaction catalyzed by this ribozyme: G2CCCUCUA5 (S) + G in-equilibrium G2CCCUCU (P) + GA5. These paradoxical enhancements are caused by decreased affinity of the ribozyme for S and P [Young, B., Herschlag, D., & Cech, T.R. (1991) Cell 67, 1007]. An additional property of these mutant ribozymes, decreased fidelity of RNA cleavage, is now analyzed. (Fidelity is the ability to cleave at the correct phosphodiester bond within a particular RNA substrate.) Introduction of deoxy residues to give "chimeric" ribo/deoxyribooligonucleotides changes the positions of incorrect cleavage. Previous work indicated that S is bound to the ribozyme by both base pairing and teritary interactions involving 2'-hydroxyl groups of S. The data herein strongly suggest that the P1 duplex, which consists of S base-paired with the 5' exon binding site of the ribozyme, can dock into tertiary interactions in different registers; different 2'-hydroxyl groups of S plug into tertiary contacts with the ribozyme in the different registers. It is concluded that the mutations decrease fidelity by increasing the probability of docking out of register relative to docking in the normal register, thereby giving cleavage at different positions along S. These data also show that the contribution of J1/2 to the teritiary interactions is indirect, not direct. Thus, a structural role of the nonconserved J1/2 is indicated: this sequence positions S to optimize tertiary binding interactions and to ensure cleavage at the phosphodiester bond corresponding to the 5' splice site. Substitution of sulfur for the nonbridging pro-RP oxygen atom at the normal cleavage site has no effect on (kcat/Km)S but decreases the fraction of cleavage at the normal site in reactions catalyzed by the -3A mutant ribozyme, which has all three A residues of J1/2 removed. Thus, the ribozyme chooses where to cleave S after rate-limiting binding of S, indicating that docking can change after binding and suggesting that the ribozyme could act processively. Indeed, it is shown that the +2A ribozyme cleaves at one position along an RNA substrate and then, before releasing that RNA product, cleaves it again.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
17.
Hammerhead ribozymes cleave RNA substrates containing the UX sequence, where X = U, C or A, embedded within sequences which are complementary to the hybridising 'arms' of the ribozyme. In this study we have replaced the RNA in the hybridising arms of the ribozyme with DNA, and the resulting ribozyme is many times more active than its precursor. In turnover-kinetics experiments with a 13-mer RNA substrate, the kcat/Km ratios are 10 and 150 microM-1min-1 for the RNA- and DNA-armed ribozymes, respectively. The effect is due mainly to differences in kcat. In independent experiments where the cleavage step is rate-limiting, the DNA-armed ribozyme cleaves the substrate with a rate constant more than 3 times greater than the all-RNA ribozyme. DNA substrates containing a ribocytidine at the cleavage site have been shown to be cleaved less efficiently than their all-RNA analogues; again however, the DNA-armed ribozyme is more effective than the all-RNA ribozyme against such DNA substrates. These results demonstrate that there are no 2'-hydroxyl groups in the arms of the ribozyme that are required for cleavage; and that the structure of the complex formed by the DNA-armed ribozyme with its substrate is more favourable for cleavage than that formed by the all-RNA ribozyme and its substrate.  相似文献   

18.
Hatchet RNAs are members of a novel self-cleaving ribozyme class that was recently discovered by using a bioinformatics search strategy. The consensus sequence and secondary structure of this class includes 13 highly conserved and numerous other modestly conserved nucleotides interspersed among bulges linking four base-paired substructures. A representative hatchet ribozyme from a metagenomic source requires divalent ions such as Mg2+ to promote RNA strand scission with a maximum rate constant of ∼4 min−1. As with all other small self-cleaving ribozymes discovered to date, hatchet ribozymes employ a general mechanism for catalysis involving the nucleophilic attack of a ribose 2′-oxygen atom on an adjacent phosphorus center. Kinetic characteristics of the reaction demonstrate that members of this ribozyme class have an essential requirement for divalent metal ions and that they might have a complex active site that employs multiple catalytic strategies to accelerate RNA cleavage by internal phosphoester transfer.  相似文献   

19.
Understanding how self-cleaving ribozymes mediate catalysis is crucial in light of compelling evidence that human and bacterial gene expression can be regulated through RNA self-cleavage. The hairpin ribozyme catalyzes reversible phosphodiester bond cleavage through a mechanism that does not require divalent metal cations. Previous structural and biochemical evidence implicated the amidine group of an active site adenosine, A38, in a pH-dependent step in catalysis. We developed a way to determine microscopic pK(a) values in active ribozymes based on the pH-dependent fluorescence of 8-azaadenosine (8azaA). We compared the microscopic pK(a) for ionization of 8azaA at position 38 with the apparent pK(a) for the self-cleavage reaction in a fully functional hairpin ribozyme with a unique 8azaA at position 38. Microscopic and apparent pK(a) values were virtually the same, evidence that A38 protonation accounts for the decrease in catalytic activity with decreasing pH. These results implicate the neutral unprotonated form of A38 in a transition state that involves formation of the 5'-oxygen-phosphorus bond.  相似文献   

20.
Wedekind JE  McKay DB 《Biochemistry》2003,42(32):9554-9563
The leadzyme is a small ribozyme, derived from in vitro selection, which catalyzes site specific, Pb(2+)-dependent RNA cleavage. Pb(2+) is required for activity; Mg(2+) inhibits activity, while many divalent and trivalent ions enhance it. The leadzyme structure consists of an RNA duplex interrupted by a trinucleotide bulge. Here, crystal structures determined to 1.8 A resolution, both with Mg(2+) as the sole divalent counterion and with Mg(2+) and Sr(2+) (which mimics Pb(2+) with respect to binding but not catalysis), reveal the metal ion interactions with both the ground state and precatalytic conformations of the leadzyme. Mg(H(2)O)(6)(2+) ions bridge complementary strands of the duplex at multiple locations by binding tandem purines of one RNA strand in the major groove. At one site, Mg(H(2)O)(6)(2+) ligates the phosphodiester backbone of the trinucleotide bulge in the ground state conformation, but not in the precatalytic conformation, suggesting (a) Mg(2+) may inhibit leadzyme activity by stabilizing the ground state and (b) metal ions which displace Mg(2+) from this site may activate the leadzyme. Binding of Sr(2+) to the presumed catalytic Pb(2+) site in the precatalytic leadzyme induces local structural changes in a manner that would facilitate alignment of the catalytic ribose 2'-hydroxyl with the scissile bond for cleavage. These data support a model wherein binding of a catalytic ion to a precatalytic conformation of the leadzyme, in conjunction with the flexibility of the trinucleotide bulge, may facilitate structural rearrangements around the scissle phosphodiester bond favoring configurations that allow bond cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号