首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ime2p is a protein kinase that is expressed only during meiosis in Saccharomyces cerevisiae. Ime2p stimulates early, middle, and late meiotic gene expression and down-regulates expression of IME1, which specifies an activator of early meiotic genes that acts independently of Ime2p. We have identified a new gene, IDS2 (for IME2-dependent signaling), which has a functional relationship to Ime2p. An ids2 null mutation delays down-regulation of IME1 and expression of middle and late meiotic genes. In an ime1 null mutant that express IME2 from the GAL1 promoter (ime1 delta PGAL1-IME2 mutant), early meiotic gene expression depends only upon Ime2p. In such strains, Ids2p is dispensable for expression of the early genes HOP1 and SPO13 but is essential for expression of the middle and late genes SPS1, SPS2, and SPS100. Ids2p is also essential for the autoregulatory pathway through which Ime2p activates its own expression via the IME2 upstream activation sequences (UAS). An PGAL1-IME2 derivative that produces a truncated Ime2p (lacking its C-terminal 174 residues) permits IME2 UAS activation in the absence of Ids2p. This observation suggests that Ids2p acts upstream of Ime2p or that Ids2p and Ime2p act in independent, convergent pathways to stimulate IME2 UAS activity. Accumulation of epitope-tagged Ids2p derivatives is greatest in growing cells and declines during meiosis. We propose that Ids2p acts indirectly to modify Ime2p activity, thus permitting Ime2p to carry out later meiotic functions.  相似文献   

2.
3.
CAK1 encodes an essential protein kinase in Saccharomyces cerevisiae that is required for activation of the Cdc28p Cdk. CAK1 also has several CDC28-independent functions that are unique to meiosis. The earliest of these functions is to induce S phase, which is regulated differently in meiosis than in mitosis. In mitosis, Cdc28p controls its own S-phase-promoting activity by signaling the destruction of its inhibitor, Sic1p. In meiosis, Sic1p destruction is signaled by the meiosis-specific Ime2p protein kinase. Our data show that Cak1p is required to activate Ime2p through a mechanism that requires threonine 242 and tyrosine 244 in Ime2p's activation loop. This activation promotes autophosphorylation and accumulation of multiply phosphorylated forms of Ime2p during meiotic development. Consistent with Cak1p's role in activating Ime2p, cells lacking Cak1p are deficient in degrading Sic1p. Deletion of SIC1 or overexpression of IME2 can partially suppress the S-phase defect in cak1 mutant cells, suggesting that Ime2p is a key target of Cak1p regulation. These data show that Cak1p is required for the destruction of Sic1p in meiosis, as in mitosis, but in meiosis, it functions through a sporulation-specific kinase.  相似文献   

4.
The cyclin-dependent kinase Cdk1 and the related kinase Ime2 act in concert to trigger progression of the meiotic cell cycle in the yeast Saccharomyces cerevisiae. These kinases share several functions and substrates during meiosis, but their regulation seems to be clearly different. In contrast to Cdk1, no cyclin seems to be involved in the regulation of Ime2 activity. Ime2 is a highly unstable protein, and we aimed to elucidate the relevance of Ime2 instability. We first determined the sequence elements required for Ime2 instability by constructing a set of deletions in the IME2 gene. None of the small deletions in Ime2 affected its instability, but deletion of a 241 amino acid C-terminal region resulted in a highly stabilized protein. Thus, the C-terminal domain of Ime2 is important for mediating protein instability. The stabilized, truncated Ime2 protein is highly active in vivo. Replacement of the IME2 gene with the truncated IME2ΔC241 in diploid strains did not interfere with meiotic nuclear divisions, but caused abnormalities in spore formation, as manifested by the appearance of many asci with a reduced spore number such as triads and dyads. The truncated Ime2 caused a reduction of spore number in a dominant manner. We conclude that downregulation of Ime2 kinase activity mediated by the C-terminal domain is required for the efficient production of normal four-spore asci. Our data suggest a role for Ime2 in spore number control in S. cerevisiae.  相似文献   

5.
6.
In the budding yeast Saccharomyces cerevisiae initiation and progression through the mitotic cell cycle are determined by the sequential activity of the cyclin-dependent kinase Cdc28. The role of this kinase in entry and progression through the meiotic cycle is unclear, since all cdc28 temperature-sensitive alleles are leaky for meiosis. We used a "heat-inducible Degron system" to construct a diploid strain homozygous for a temperature-degradable cdc28-deg allele. We show that this allele is nonleaky, giving no asci at the nonpermissive temperature. We also show, using this allele, that Cdc28 is not required for premeiotic DNA replication and commitment to meiotic recombination. IME2 encodes a meiosis-specific hCDK2 homolog that is required for the correct timing of premeiotic DNA replication, nuclear divisions, and asci formation. Moreover, in ime2Delta diploids additional rounds of DNA replication and nuclear divisions are observed. We show that the delayed premeiotic DNA replication observed in ime2Delta diploids depends on a functional Cdc28. Ime2Delta cdc28-4 diploids arrest prior to initiation of premeiotic DNA replication and meiotic recombination. Ectopic overexpression of Clb1 at early meiotic times advances premeiotic DNA replication, meiotic recombination, and nuclear division, but the coupling between these events is lost. The role of Ime2 and Cdc28 in initiating the meiotic pathway is discussed.  相似文献   

7.
The Ime2 protein kinase family in fungi: more duties than just meiosis   总被引:2,自引:0,他引:2  
Ime2 of the budding yeast Saccharomyces cerevisiae belongs to a family of conserved protein kinases displaying sequence similarities to both cyclin-dependent kinases and mitogen-activated protein kinases. Ime2 has a pivotal role for meiosis and sporulation. The involvement of this protein kinase in the regulation of various key events in meiosis, such as the initiation of DNA replication, the expression of meiosis-specific genes and the passage through the two consecutive rounds of nuclear divisions has been characterized in detail. More than 20 years after the identification of the IME2 gene, a recent report has provided the first evidence for a function of this gene outside of meiosis, which is the regulation of pseudohyphal growth. In the last few years, Ime2-related protein kinases from various fungal species were studied. Remarkably, these homologues are not generally required for meiosis, but instead have other specific tasks. In filamentous ascomycete species, Ime2 homologues are involved in the inhibition of fruiting body formation in response to environmental signals. In the pathogenic basidiomycetes Ustilago maydis and Cryptococcus neoformans, members of this kinase family apparently have primary roles in regulating mating. Thus, Ime2-related kinases exhibit an amazing variety in controlling sexual developmental programs in fungi.  相似文献   

8.
Ime2p is a meiosis-specific protein kinase in Saccharomyces cerevisiae that controls multiple steps in meiosis. Although Ime2p is functionally related to the Cdc28p cyclin-dependent kinase (CDK), no cyclin binding partners that regulate its activities have been identified. The sequence of the Ime2p catalytic domain is similar to CDKs and mitogen-activated protein kinases (MAPKs). Ime2p is activated by phosphorylation of its activation loop in a Cak1p-dependent fashion and is subsequently phosphorylated on multiple residues as cells progress through meiosis. In this study, we show that Ime2p purified from meiotic cells is phosphorylated on Thr(242) and Tyr(244) in its activation loop and on Ser(520) and Ser(625) in its C terminus. Ime2p autophosphorylates on threonine in its activation loop in vitro consistent with autophosphorylation of Thr(242) playing a role in its activation. Moreover, autophosphorylation in cis is required for Ime2p to become hyperphosphorylated. Phosphorylation of the C-terminal serines is not essential to sporulation. However, Ime2p C-terminal phosphorylation site mutants genetically interact with components of the FEAR network that controls exit from meiosis I. These data suggest that Ime2p plays a role in controlling the exit from meiosis I and demonstrate that a phospho-modification pathway regulates Ime2p during the different phases of meiotic development.  相似文献   

9.
In Saccharomyces cerevisiae, the cellular single-stranded DNA-binding protein replication protein A (RPA) becomes phosphorylated during meiosis in two discrete reactions. The primary reaction is first observed shortly after cells enter the meiotic program and leads to phosphorylation of nearly all the detectable RPA. The secondary reaction, which requires the ATM/ATR homologue Mec1, is induced upon initiation of recombination and only modifies a fraction of the total RPA. We now report that correct timing of both RPA phosphorylation reactions requires Ime2, a meiosis-specific protein kinase that is critical for proper initiation of meiotic progression. Expression of Ime2 in vegetative cells leads to an unscheduled RPA phosphorylation reaction that does not require other tested meiosis-specific kinases and is distinct from the RPA phosphorylation reaction that normally occurs during mitotic growth. In addition, immunoprecipitated Ime2 catalyzes phosphorylation of purified RPA. Our data strongly suggest that Ime2 is an RPA kinase in vivo. We propose that Ime2 directly catalyzes RPA phosphorylation in the primary reaction and indirectly promotes the Mec1-dependent secondary reaction by advancing cells through meiotic progression. Our studies have identified a novel meiosis-specific reaction that targets a key protein required for DNA replication, repair, and recombination. This pathway could be important in differentiating mitotic and meiotic DNA metabolism.  相似文献   

10.
Saccharomyces cerevisiae Gpa2p, the alpha subunit of a heterotrimeric guanine nucleotide-binding protein (G protein), is involved in the regulation of vegetative growth and pseudohyphal development. Here we report that Gpa2p also controls sporulation by interacting with the regulatory domain of Ime2p (Sme1p), a protein kinase essential for entrance of meiosis and sporulation. Protein-protein interactions between Gpa2p and Ime2p depend on the GTP-bound state of Gpa2p and correlate with down-regulation of Ime2p kinase activity in vitro. Overexpression of Ime2p inhibits pseudohyphal development and enables diploid cells to sporulate even in the presence of glucose or nitrogen. In contrast, overexpression of Gpa2p in cells simultaneously overproducing Ime2p results in a drastic reduction of sporulation efficiency, demonstrating an inhibitory effect of Gpa2p on Ime2p function. Furthermore, deletion of GPA2 accelerates sporulation on low-nitrogen medium. These observations are consistent with the following model. In glucose-containing medium, diploid cells do not sporulate because Ime2p is inactive or expressed at low levels. Upon starvation, expression of Gpa2p and Ime2p is induced but sporulation is prevented as long as nitrogen is present in the medium. The negative control of Ime2p kinase activity is exerted at least in part through the activated form of Gpa2p and is released as soon as nutrients are exhausted. This model attributes a switch function to Gpa2p in the meiosis-pseudohyphal growth decision.  相似文献   

11.
12.
The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb-Cdc28 inhibitor Sic1. In proliferating cells Cln-Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCF(Cdc4) and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCF(Cdc4) was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCF(Cdc4). In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation.  相似文献   

13.
Ime2 is the founding member of a family of protein kinases that are required for effective progression through meiotic development. Ime2 is essential for the induction of meiosis-specific genes and for the activation of meiotic DNA replication in the budding yeast Saccharomyces cerevisiae. Aside from the fact that Ime2 is a protein kinase and shares several amino acid motifs with cyclin dependent kinases, virtually nothing is known about its enzymatic properties or substrates. Biochemical characterization of Ime2 has been hindered by its low abundance and short half-life. We have created baculovirus expression vectors to produce recombinant Ime2 in insect cells. In this report, we describe the overproduction of Ime2 and its purification using affinity chromatography. Using this procedure, we have been able to purify up to 2mg Ime2 from 1L of infected insect cells. The Ime2 isolated by this method displays properties similar to those of the native enzyme that has been immunoprecipitated from yeast. The high level expression of Ime2 in this system and its ease of purification will be beneficial for more extensive biochemical analysis of Ime2 and related meiosis-specific kinases.  相似文献   

14.
15.
The Saccharomyces cerevisiae RIM15 gene was identified previously through a mutation that caused reduced ability to undergo meiosis. We report here an analysis of the cloned RIM15 gene, which specifies a 1,770-residue polypeptide with homology to serine/threonine protein kinases. Rim15p is most closely related to Schizosaccharomyces pombe cek1+. Analysis of epitope-tagged derivatives indicates that Rim15p has autophosphorylation activity. Deletion of RIM15 causes reduced expression of several early meiotic genes (IME2, SPO13, and HOP1) and of IME1, which specifies an activator of early meiotic genes. However, overexpression of IME1 does not permit full expression of early meiotic genes in a rim15delta mutant. Ime1p activates early meiotic genes through its interaction with Ume6p, and analysis of Rim15p-dependent regulatory sites at the IME2 promoter indicates that activation through Ume6p is defective. Two-hybrid interaction assays suggest that Ime1p-Ume6p interaction is diminished in a rim15 mutant. Glucose inhibits Ime1p-Ume6p interaction, and we find that Rim15p accumulation is repressed in glucose-grown cells. Thus, glucose repression of Rim15p may be responsible for glucose inhibition of Ime1p-Ume6p interaction.  相似文献   

16.
Entry into and precise progression through the cell cycle depends on the sequential expression and activation of cyclin dependent kinases (CDK). In accord, CDK dysregulation is a hallmark of many cancers. The function of Cdk2 is still an enigma as in vitro studies revealed that it is required for S phase-entry, whereas in vivo studies showed that Cdk2 is not an essential gene. Moreover, unlike other Cdks, or its cyclin E regulator, Cdk2-overexpressing tumors were reported only in one type of tumor. In this report we used budding yeast as a tool to explore Cdk2 function. We showed that hCdk2 promoted S phase in cells carrying a temperature-sensitive mutation in yCDK1, albeit, only when expressed at low or moderate levels. Overexpression of hCdk2 resulted in a defect in the G1 to S transition and a reduction in viability. The same phenotypes were observed in cells overexpressing its yeast functional homolog, Ime2, which is a meiosis-specific CDK-like kinase. A genetic interaction with the DNA damage checkpoint was demonstrated by showing an increased toxicity of hCdk2 and Ime2 in RAD53-deleted cells, and delayed Rad53 activation in response to MMS treatment in cells overexpressing hCdk2 or Ime2.  相似文献   

17.
In budding yeast, commitment to DNA replication during the normal cell cycle requires degradation of the cyclin-dependent kinase (CDK) inhibitor Sic1. The G1 cyclin-CDK complexes Cln1-Cdk1 and Cln2-Cdk1 initiate the process of Sic1 removal by directly catalyzing Sic1 phosphorylation at multiple sites. Commitment to DNA replication during meiosis also appears to require Sic1 degradation, but the G1 cyclin-CDK complexes are not involved. It has been proposed that the meiosis-specific protein kinase Ime2 functionally replaces the G1 cyclin-CDK complexes to promote Sic1 destruction. To investigate this possibility, we compared Cln2-Cdk1 and Ime2 protein kinase activities in vitro. Both enzyme preparations were capable of catalyzing phosphorylation of a GST-Sic1 fusion protein, but the phosphoisomers generated by the two activities had significantly different electrophoretic mobilities. Furthermore, mutation of consensus CDK phosphorylation sites in Sic1 affected Cln2-Cdk1- but not Ime2-dependent phosphorylation. Phosphoamino acid analysis and phosphopeptide mapping provided additional evidence that Cln2-Cdk1 and Ime2 targeted different residues within Sic1. Examination of other substrates both in vitro and in vivo also revealed differing specificities. These results indicate that Ime2 does not simply replace G1 cyclin-CDK complexes in promoting Sic1 degradation during meiosis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号