首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of pyruvate dehydrogenase phosphatase activity by polyamines   总被引:6,自引:0,他引:6  
Pyruvate dehydrogenase phosphatase requires Mg2+ or Mn2+, and its activity in the presence of Mg2+ is markedly stimulated by Ca2+. At saturating Mg2+ and Ca2+ concentrations, the polyamines spermine, spermidine and putrescine stimulated the activity of pyruvate dehydrogenase phosphatase 1.5- to 3-fold. Spermine was the most active of the polyamines. At a physiological concentration of Mg2+ (1 mM) and saturating Ca2+ concentration, the stimulation by 0.5 mM spermine was 4- to 5-fold, and at 0.3 mM Mg2+, the stimulation was 20- to 30-fold. In the absence of Mg2+ or Ca2+, spermine had no effect. These results suggest that a polybasic factor may be involved in the regulation of pyruvate dehydrogenase phosphatase activity.  相似文献   

2.
3.
Glucose uptake/production was studied as a function of varied glucose loadsin isolated perfused livers from glucagon-treated alloxan-diabetic rats. Uptake of D-[U-14C]glucose was seen at all levels studied - 9.5–71 mM. In studies with unlabelled D-glucose carried out in the absence of 3-mercaptopicolinate, livers of diabetic rats showed a net production of glucose with perfusate glucose levels less than 22 mM. Above this level, these livers exhibited a time- and concentration-dependent net uptake of glucose for the period of 20–30 min. When 4 mM 3-mercaptopicolinate, which inhibited gluconeogenesis from endogenous substrates, was included in perfusates, a continuous net uptake of unlabelled glucose was observed at all levels above 4 mM. This lowering of the null-point, cross-over glucose concentration was shown to relate mechanistically to the observed reduction in steady hepatic glucose 6-phosphate level produced by mercaptopicolinate. The need for supplemental mechanisms of glucose utilization by high Kww hepatic enzyme(s) operative in the virtual absence of insulin-dependent glucokinase also is indicated by these observations and by kinetic analysis.  相似文献   

4.
The regulation of flux through pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) by fatty acids and glucagon was studied in situ, in intact hepatocyte suspensions. The rate of pyruvate metabolized by carboxylation plus decarboxylation was determined from the incorporation of [1-14C]pyruvate into 14CO2 plus [14C]glucose. The flux through PDH was determined from the rate of formation of 14CO2 from [1-14C]pyruvate corrected for other decarboxylation reactions (citrate cycle, phosphoenolpyruvate carboxykinase and malic enzyme), and the flux through PC was determined by subtracting the flux through PDH from the total pyruvate metabolized. With 0.5 mM pyruvate as substrate the ratio of flux through PDH/PC was 1.9 in hepatocytes from fed rats and 1.4 in hepatocytes from 24 h-starved rats. In hepatocytes from fed rats, octanoate (0.8 mM) and palmitate (0.5 mM) increased the flux through PDH (59-76%) and PC (80-83%) without altering the PDH/PC flux ratios. Glucagon did not affect the flux through PDH but it increased the flux through PC twofold, thereby decreasing the PDH/PC flux ratio to the value of hepatocytes from starved rats. In hepatocytes from starved rats, fatty acids had similar effects on pyruvate metabolism as in hepatocytes from fed rats, however glucagon did not increase the flux through PC. 2[5(4-Chlorophenyl)pentyl]oxirane-2-carboxylate (100 microM) an inhibitor of carnitine palmitoyl transferase I, reversed the palmitate-stimulated but not the octanoate-stimulated flux through PDH, in cells from fed rats, indicating that the effects of fatty acids on PDH are secondary to the beta-oxidation of fatty acids. This inhibitor also reversed the stimulatory effect of palmitate on PC and partially inhibited the flux through PC in the presence of octanoate suggesting an effect of POCA independent of fatty acid oxidation. It is concluded that the effects of fatty acids on pyruvate metabolism are probably secondary to increased pyruvate uptake by mitochondria in exchange for acetoacetate. Glucagon favours the partitioning of pyruvate towards carboxylation, by increasing the flux through pyruvate carboxylase, without directly inhibiting the flux through PDH.  相似文献   

5.
Soluble and stable insulin-dextran complex was prepared. Pyruvate dehydrogenase activity, as assayed by 14CO2 formation from [1-14C]-pyruvate in crude mitochondria of mouse adipose tissue, was increased after incubation of fat pads with native insulin or insulin-dextran. The direct addition of insulin or insulin-dextran to mitochondria was without effect. At submaximal stimulation, insulin-dextran was 10 times less effective than native insulin but the degree of maximal stimulation and the time course of activation by insulin and insulin-dextran were similar. The results favor the concept that the activation of pyruvate dehydrogenase in fat cells does not need the entry of insulin into cells.  相似文献   

6.
The overall reaction catalyzed by the pyruvate dehydrogenase complex from rat epididymal fat tissue is inhibited by glyoxylate at concentrations greater than 10 μm. The inhibition is competitive with respect to pyruvate; Ki was found to be 80 μm. Qualitatively similar results were observed using pyruvate dehydrogenase from rat liver, kidney, and heart. Glyoxylate also inhibits the pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat, with the inhibition being readily detectable using 50 μm glyoxylate. These effects of glyoxylate are largely reversed by millimolar concentrations of thiols (especially cysteine) because such compounds form relatively stable adducts with glyoxylate. Presumably these inhibitions by low levels of glyoxylate had not been previously observed, because others have used high concentrations of thiols in pyruvate dehydrogenase assays. Since the inhibitory effects are seen with suspected physiological concentrations, it seems likely that glyoxylate partially controls the activity of pyruvate dehydrogenase in vivo.  相似文献   

7.
8.
Rat hepatic pyruvate kinase (type L) has been purified to homogeneity by a simple, rapid procedure involving DEAE-cellulose chromatography and elution from a blue Sepharose column. The enzyme was homogeneous by the criteria of sodium dodecyl sulfate disc gel electrophoresis, had a subunit molecular weight of 57,000, and a specific activity of 558 units/mg of protein at 30 degrees. In order to test whether the enzyme is phosphorylated in vivo, rats were injected with radioactive inorganic phosphate. Incorporation into pyruvate kinase was determined after purification of the enzyme to homogeneity as well as after specific immunoprecipitation of the enzyme from partially purified preparations. Sodium dodecyl sulfate disc gel electrophoresis revealed that 32P was incorporated into the enzyme in both cases. Glucagon administration in vivo resulted in a 200 to 300% increase in the incorporation of 32P into the enzyme which was correlated with an inhibition of enzyme activity and an elevation of hepatic levels of cyclic AMP. These results represent the first demonstration of in vivo phosphorylation of a hepatic glycolytic enzyme and strongly support the hypothesis that glucagon regulates pyruvate kinase activity, at least in part, by a phosphorylation mechanism.  相似文献   

9.
Isolated rat liver mitochondria incubated in the presence of 3-hydroxybutyrate display a markedly increased rate of pyruvate carboxylation as measured by malate and citrate production from pyruvate. The stimulation was demonstrable both with exogenously added pyruvate, even at saturating concentration, and with pyruvate intramitochondrially generated from alanine. The concentration of DL-3-hydroxybutyrate required for half-maximal stimulation amounted to about 1.5 mM. The intramitochondrial ATP/ADP ratio as well as the matrix acetyl-CoA level was found to remain unchanged by 3-hydroxybutyrate exposure, which, however, lowered the absolute intramitochondrial contents of the respective adenine nucleotides. The effects of 3-hydroxybutyrate were diminished by the concomitant addition of acetoacetate. Moreover, a direct relationship between mitochondrial reduction by proline and the rate of pyruvate carboxylation was observed. The results seem to indicate that the mitochondrial oxidation--reduction state might be involved in the expression of the 3-hydroxybutyrate effect. As to the physiological relevance of the findings, 3-hydroxybutyrate could be shown to activate pyruvate carboxylation in isolated hepatocytes.  相似文献   

10.
Kato M  Chuang JL  Tso SC  Wynn RM  Chuang DT 《The EMBO journal》2005,24(10):1763-1774
The human pyruvate dehydrogenase complex (PDC) is regulated by reversible phosphorylation by four isoforms of pyruvate dehydrogenase kinase (PDK). PDKs phosphorylate serine residues in the dehydrogenase (E1p) component of PDC, but their amino-acid sequences are unrelated to eukaryotic Ser/Thr/Tyr protein kinases. PDK3 binds to the inner lipoyl domains (L2) from the 60-meric transacetylase (E2p) core of PDC, with concomitant stimulated kinase activity. Here, we present crystal structures of the PDK3-L2 complex with and without bound ADP or ATP. These structures disclose that the C-terminal tail from one subunit of PDK3 dimer constitutes an integral part of the lipoyl-binding pocket in the N-terminal domain of the opposing subunit. The two swapped C-terminal tails promote conformational changes in active-site clefts of both PDK3 subunits, resulting in largely disordered ATP lids in the ADP-bound form. Our structural and biochemical data suggest that L2 binding stimulates PDK3 activity by disrupting the ATP lid, which otherwise traps ADP, to remove product inhibition exerted by this nucleotide. We hypothesize that this allosteric mechanism accounts, in part, for E2p-augmented PDK3 activity.  相似文献   

11.
12.
L Kushner  H Schulz 《Life sciences》1987,41(4):485-490
3-Mercaptopropanoyl-CoA and S-acetyl-3-mercaptopropanoyl-CoA, physiological metabolites of the known convulsant 3-mercaptopropanoic acid, were found to be inhibitors of purified pyruvate dehydrogenase complex from porcine and bovine heart. Under optimal conditions, 50% inhibition was obtained at 12.6 microM 3-mercaptopropanoyl-CoA or 5 microM S-acetyl-3-mercaptopropanoyl-CoA. The inhibition caused by S-acetyl-3-mercaptopropanoyl-CoA was irreversible. Maximal inhibition of the complex was observed when it was preincubated with the inhibitor under conditions which promote reduction of the endogenous lipoate.  相似文献   

13.
1. Pig heart pyruvate dehydrogenase phosphate complex in which all three sites of phosphorylation were completely phosphorylated was re-activated at a slower rate by phosphatase than complex predominantly phosphorylated in site 1. The ratio of initial rates of re-activation was approx. 1:5 with a comparatively crude preparation of phosphatase and with phosphatase purified by gel filtration and ion-exchange chromatography. 2. The ratio of apparent first-order rate constants during dephosphorylation of fully phosphorylated complex averaged 1/3.8/1.3 for site 1/site 2/site 3. Only site-1 dephosphorylation was linearly correlated with re-activation of the complex throughout dephosphorylation. Dephosphorylation of site 3 was linearly correlated with re-activation after an initial burst of dephosphorylation. 3. Because dephosphorylation of site 1 was always associated with dephosphorylation of site 2, it is concluded that dephosphorylation cannot be purely random. 4. The ratio of apparent first-order rate constants for dephosphorylation of site 1 (partially/fully phosphorylated complexes) averaged 1.72. This ratio is smaller than the ratio of approx. 5 for the initial rates of re-activation. Possible mechanisms involved in the diminished rate of re-activation of fully phosphorylated complex are discussed.  相似文献   

14.
The phosphorylation of sites additional to an inactivating site inhibits the formation of active pig heart pyruvate dehydrogenase complex from inactive pyruvate dehydrogenase phosphate complex by pig heart pyruvate dehydrogenase phosphate phosphatase.  相似文献   

15.
L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.  相似文献   

16.
The E. coli pyruvate dehydrogenase complex was inhibited by pyruvate in absence of its cofactor, NAD+. The inhibition was found to increase with pH and phosphate concentration of the buffer and decrease with its ionic strength. The inhibition profile was different with MOPS buffer. No radioactivity was found in the enzyme, when the latter was incubated with 2-14C-pyruvate. The results suggest that covalent adduct formation is not necessary for the observed inhibition.  相似文献   

17.
Inactivation of the pyruvate dehydrogenase complex by 3-bromopyruvate is thiamin pyrophosphate (TPP)-dependent. Inactivation with 2-14C- or 3-14C-labeled 3-bromopyruvate results in TPP-dependent covalent labeling of more than 60 sites in the complex, all of which are associated with the dihydrolipoyl transacetylase component. Inactivation by 3-bromo[1-14C]pyruvate labels up to 20 sites associated with dihydrolipoyl transacetylase, also with TPP dependence. Systemic chemical degradation of the complex inactivated by 3-bromo[2-14C]pyruvate under conditions that would convert lipoyl groups to S,S,-biscarboxymethyl dihydrolipoic acid produces S,S,-bis[14C]carboxymethyl dihydrolipoic acid. It is concluded that 3-bromopyruvate inactivates this complex by initially undergoing the first two steps of the usual catalytic pathway, TPP-dependent decarboxylation followed by reductive bromoacetylation of lipoyl moieties. The sulfhydryl groups of S-bromoacetyl dihydrolipoyl moieties generated by reductive bromoacetylation are then alkylated by 3-bromopyruvate as well as by bromoacetyl thioester groups associated with the complex.  相似文献   

18.
Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been constructed by branching from acetyl-CoA and malonyl-CoA, which are key intermediates for photosynthetic chemical production downstream of pyruvate decarboxylation. Recent reports of the absolute determination of cellular metabolites in Synechococcus elongatus PCC 7942 have shown that its acetyl-CoA levels corresponded to about one hundredth of the pyruvate levels. In short, one of the reasons for lower photosynthetic chemical production from acetyl-CoA and malonyl-CoA was the smaller flux to acetyl-CoA. Pyruvate decarboxylation is a primary pathway for acetyl-CoA synthesis from pyruvate and is mainly catalyzed by the pyruvate dehydrogenase complex (PDHc). In this study, we tried to enhance the flux toward acetyl-CoA from pyruvate by overexpressing PDH genes and, thus, catalyzing the conversion of pyruvate to acetyl-CoA via NADH generation. The overexpression of PDH genes cloned from S. elongatus PCC 7942 significantly increased PDHc enzymatic activity and intracellular acetyl-CoA levels in the crude cell extract. Although growth defects were observed in overexpressing strains of PDH genes, the combinational overexpression of PDH genes with the synthetic metabolic pathway for acetate or isopropanol resulted in about 7-fold to 9-fold improvement in its production titer, respectively (9.9 mM, 594.5 mg/L acetate, 4.9 mM, 294.5 mg/L isopropanol). PDH genes overexpression would, therefore, be useful not only for the production of these model chemicals, but also for the production of other chemicals that require acetyl-CoA as a key precursor.  相似文献   

19.
The aim of this study was to investigate the mechanism of inhibition of mitochondrial aldehyde dehydrogenase (ALDH2) by carbon tetrachloride (CCl4). CCl4 administration caused marked hepatocyte ballooning and necrosis in the pericentral region. CCl4 also inhibited hepatic ALDH2 activity in a time-dependent manner without altering the protein level, suggesting ALDH2 inhibition through covalent modifications such as phosphorylation by JNK. To demonstrate phosphorylation, the isoelectric point (pI) of ALDH2 in CCl4-exposed rats was compared to that of untreated controls. Immunoblot analysis revealed that immunoreactive ALDH2 bands in CCl4-exposed rats were shifted to acidic pI ranges on two-dimensional electrophoresis (2-DE) gels. Incubation with alkaline phosphatase significantly restored the suppressed ALDH2 activity with a concurrent alkaline pI shift of the ALDH2 spots. Both JNK and activated JNK were translocated to mitochondria after CCl4 exposure. In addition, incubation with catalytically active JNK led to significant inhibition of ALDH2 activity, with an acidic pI shift on 2-DE gels. Furthermore, immunoprecipitation followed by immunoblot analysis with anti-phospho-Ser–Pro antibody revealed phosphorylation of a Ser residue(s) of ALDH2. These results collectively indicate a novel underlying mechanism by which CCl4 exposure activates JNK, which translocates to mitochondria and phosphorylates ALDH2, contributing to inhibition of ALDH2 activity accompanied by decreased cellular defense capacity and increased lipid peroxidation.  相似文献   

20.
H Sies  P Graf    D Crane 《The Biochemical journal》1983,212(2):271-278
Vasopressin or alpha-adrenergic agents such as phenylephrine or adrenaline, but not glucagon, elicited an initial decrease in flux through pyruvate dehydrogenase assayed by 14CO2 production from [1-14C]pyruvate in perfused rat liver. This rapid decrease in 14CO2 production was maximal within 1-2 min of exposure, concomitant with a rise in effluent pyruvate concentration: a subsequent return towards initial values in both parameters was completed well before 5 min. This time course was superposed with Ca2+ efflux from perfused liver, maximal (at 116 nmol/min per g wet wt. of liver) at 1-2 min of exposure. The percentage of the active (dephospho) form of pyruvate dehydrogenase was not decreased at 2 min of exposure. The effect on flux through pyruvate dehydrogenase by phenylephrine was abolished by prazosine, phentolamine or phenoxybenzamine. Ionophore A23187 also caused a depression in 14CO2 production from [1-14C]pyruvate and a rise in effluent pyruvate concentration, but this effect was stable for longer times, and it was delayed when Ca2+ was omitted from the perfusion medium. Responses of phenylephrine and A23187 were not additive. The results demonstrate that under the experimental conditions employed in intact perfused liver, the mitochondrial multienzyme system of pyruvate dehydrogenase is sensitive to vasopressin, alpha-adrenergic agents and A23187. The similar time course in Ca2+ efflux may be indicative of the involvement of Ca2+ in mediating this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号