首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Golgi stacks are often located near sites of "transitional ER" (tER), where COPII transport vesicles are produced. This juxtaposition may indicate that Golgi cisternae form at tER sites. To explore this idea, we examined two budding yeasts: Pichia pastoris, which has coherent Golgi stacks, and Saccharomyces cerevisiae, which has a dispersed Golgi. tER structures in the two yeasts were visualized using fusions between green fluorescent protein and COPII coat proteins. We also determined the localization of Sec12p, an ER membrane protein that initiates the COPII vesicle assembly pathway. In P. pastoris, Golgi stacks are adjacent to discrete tER sites that contain COPII coat proteins as well as Sec12p. This arrangement of the tER-Golgi system is independent of microtubules. In S. cerevisiae, COPII vesicles appear to be present throughout the cytoplasm and Sec12p is distributed throughout the ER, indicating that COPII vesicles bud from the entire ER network. We propose that P. pastoris has discrete tER sites and therefore generates coherent Golgi stacks, whereas S. cerevisiae has a delocalized tER and therefore generates a dispersed Golgi. These findings open the way for a molecular genetic analysis of tER sites.  相似文献   

2.
Summary The formation of three types of vesicles in the oomycetePhytophthora cinnamomi was investigated using ultrastructural and immunocytochemical techniques. All three vesicles are synthesised at the same time; one type serves a storage role; the others undergo regulated secretion. A monoclonal antibody Lpv-1 that is specific for glycoproteins contained in the storage vesicles labelled the endoplasmic reticulum (ER), elements in the transition region between ER and Golgi stack, and cis, medial and trans Golgi cisternae. Cpa2, a monoclonal antibody specific for glycoproteins contained within secretory dorsal vesicles labelled the transition region, cis cisternae and a trans-Golgi network. Vesicles possessing a structure characteristic of mature secretory ventral vesicles were observed in close association with the trans face of Golgi stacks. The results suggest that all three vesicles are formed by the Golgi apparatus. Double immunogold labelling with Lpv-1 and Cpa-2 showed that these two sets of glycoproteins occurred within the same Golgi cisternae, indicating that both products pass through and are sorted concurrently within a single Golgi stack.  相似文献   

3.
BACKGROUND: Proteins are exported from the ER at transitional ER (tER) sites, which produce COPII vesicles. However, little is known about how COPII components are concentrated at tER sites. The budding yeast Pichia pastoris contains discrete tER sites and is, therefore, an ideal system for studying tER organization. RESULTS: We show that the integrity of tER sites in P. pastoris requires the peripheral membrane protein Sec16. P. pastoris Sec16 is an order of magnitude less abundant than a COPII-coat protein at tER sites and seems to show a saturable association with these sites. A temperature-sensitive mutation in Sec16 causes tER fragmentation at elevated temperature. This effect is specific because when COPII assembly is inhibited with a dominant-negative form of the Sar1 GTPase, tER sites remain intact. The tER fragmentation in the sec16 mutant is accompanied by disruption of Golgi stacks. CONCLUSIONS: Our data suggest that Sec16 helps to organize patches of COPII-coat proteins into clusters that represent tER sites. The Golgi disruption that occurs in the sec16 mutant provides evidence that Golgi structure in budding yeasts depends on tER organization.  相似文献   

4.
The de novo model for Golgi stack biogenesis predicts that membrane exiting the ER at transitional ER (tER) sites contains and recruits all the necessary molecules to form a Golgi stack, including the Golgi matrix proteins, p115, GM130, and GRASP65/55. These proteins leave the tER sites faster than Golgi transmembrane resident enzymes, suggesting that they act as a template nucleating the formation of the Golgi apparatus. However, the localization of the Golgi matrix proteins at tER sites is only shown under conditions where exit from the ER is blocked. Here, we show in Drosophila S2 cells, that dGRASP, the single Drosophila homologue of GRASP65/55, localizes both to the Golgi membranes and the tER sites at steady state and that the myristoylation of glycine 2 is essential for the localization to both compartments. Its depletion for 96 h by RNAi gave an effect on the architecture of the Golgi stacks in 30% of the cells, but a double depletion of dGRASP and dGM130 led to the quantitative conversion of Golgi stacks into clusters of vesicles and tubules, often featuring single cisternae. This disruption of Golgi architecture was not accompanied by the disorganization of tER sites or the inhibition of anterograde transport. This shows that, at least in Drosophila, the structural integrity of the Golgi stacks is not required for efficient transport. Overall, dGRASP exhibits a dynamic association to the membrane of the early exocytic pathway and is involved in Golgi stack architecture.  相似文献   

5.
A typical vertebrate cell contains several hundred sites of transitional ER (tER). Presumably, tER sites generate elements of the ER-Golgi intermediate compartment (ERGIC), and ERGIC elements then generate Golgi cisternae. Therefore, characterizing the mechanisms that influence tER distribution may shed light on the dynamic behavior of the Golgi. We explored the properties of tER sites using Sec13 as a marker protein. Fluorescence microscopy confirmed that tER sites are long-lived ER subdomains. tER sites proliferate during interphase but lose Sec13 during mitosis. Unlike ERGIC elements, tER sites move very little. Nevertheless, when microtubules are depolymerized with nocodazole, tER sites redistribute rapidly to form clusters next to Golgi structures. Hence, tER sites have the unusual property of being immobile, yet dynamic. These findings can be explained by a model in which new tER sites are created by retrograde membrane traffic from the Golgi. We propose that the tER-Golgi system is organized by mutual feedback between these two compartments.  相似文献   

6.
Structure of Golgi apparatus   总被引:2,自引:0,他引:2  
Summary Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.  相似文献   

7.
Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternae of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

8.
Summary Golgi apparatus in subapical regions of hyphae consist of paranuclear dictyosomes with 4–5 cisternae each. Transverse and tangential sections provide ultrastructural evidence for a three-dimensional architectural model of the Golgi apparatus and a stepwise mechanism for dictyosome multiplication. The dictyosomes are polarized, with progressive morphological and developmental differentiation of cisternae from the cis to the trans pole. Small membrane blebs and transition vesicles provide developmental continuity between the nuclear envelope and the adjacent dictyosome cisterna at the cis face. Cisternae are formed as fenestrated plates with extended tubular peripheries. The morphology of each cisterna depends on its position in the stack, consistent with a developmental gradient of progressive maturation and turnover of cisternae. Mature cisternae at the trans face are dissociated to produce spheroid and tubular vesicles. Evidence in support of a schematic sequence for increasing the numbers of dictyosomes comes from images of distinctive and unusual forms of Golgi apparatus in hyphal regions where nuclei and dictyosomes multiply, as follows: (a) The area of the nuclear envelope exhibiting forming-face activity next to a dictyosome expands, which in turn increases the size of cisternae subsequently assembled at the cis face of the dictyosome. (b) As subsequent large cisternae are formed and mature as they pass through the dictyosome, an entire dictyosome about twice normal size is built up. The number of cisternae per stack remains the same because of continuing turnover and loss of cisternae at the trans face, (c) This enlarged dictyosome becomes separated into two by a small region of the nuclear envelope next to the cis face that acquires polyribosomes and no longer generates transition vesicles, (d) As a consequence, assembly of new dictyosomes is physically separated into two adjacent regions, (e) As.the enlarged cisternae are lost to vesiculation at the trans pole, they are replaced by two separate stacks of cisternae with typical normal diameters, (f) The net result is two adjacent dictyosomes where one existed previously. Dictyosome multiplication is thus accomplished as part of the normal developmental turnover of cisternae, without interrupting the functioning of the Golgi apparatus as it continues to produce new secretory vesicles from mature cisternae at the trans face. Coordination of Golgi apparatus multiplication with nuclear division ensures that each daughter nucleus receives a complement of paranuclear dictyosomes.  相似文献   

9.
Summary Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternac of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

10.
Three-dimensional reconstructions of portions of the Golgi complex from cryofixed, freeze-substituted normal rat kidney cells have been made by dual-axis, high-voltage EM tomography at approximately 7-nm resolution. The reconstruction shown here ( approximately 1 x 1 x 4 microm3) contains two stacks of seven cisternae separated by a noncompact region across which bridges connect some cisternae at equivalent levels, but none at nonequivalent levels. The rest of the noncompact region is filled with both vesicles and polymorphic membranous elements. All cisternae are fenestrated and display coated buds. They all have about the same surface area, but they differ in volume by as much as 50%. The trans-most cisterna produces exclusively clathrin-coated buds, whereas the others display only nonclathrin coated buds. This finding challenges traditional views of where sorting occurs within the Golgi complex. Tubules with budding profiles extend from the margins of both cis and trans cisternae. They pass beyond neighboring cisternae, suggesting that these tubules contribute to traffic to and/or from the Golgi. Vesicle-filled "wells" open to both the cis and lateral sides of the stacks. The stacks of cisternae are positioned between two types of ER, cis and trans. The cis ER lies adjacent to the ER-Golgi intermediate compartment, which consists of discrete polymorphic membranous elements layered in front of the cis-most Golgi cisterna. The extensive trans ER forms close contacts with the two trans-most cisternae; this apposition may permit direct transfer of lipids between ER and Golgi membranes. Within 0.2 microm of the cisternae studied, there are 394 vesicles (8 clathrin coated, 190 nonclathrin coated, and 196 noncoated), indicating considerable vesicular traffic in this Golgi region. Our data place structural constraints on models of trafficking to, through, and from the Golgi complex.  相似文献   

11.
Summary The plant root tip represents a fascinating model system for studying changes in Golgi stack architecture associated with the developmental progression of meristematic cells to gravity sensing columella cells, and finally to young and old, polysaccharideslime secreting peripheral cells. To this end we have used high pressure freezing in conjunction with freeze-substitution techniques to follow developmental changes in the macromolecular organization of Golgi stacks in root tips ofArabidopsis andNicotiana. Due to the much improved structural preservation of all cells under investigation, our electron micrographs reveal both several novel structural features common to all Golgi stacks, as well as characteristic differences in morphology between Golgi stacks of different cell types.Common to all Golgi stacks are clear and discrete differences in staining patterns and width of cis, medial and trans cisternae. Cis cisternae have the widest lumina (30 nm) and are the least stained. Medial cisternae are narrower (20 nm) and filled with more darkly staining products. Most trans cisternae possess a completely collapsed lumen in their central domain, giving rise to a 4–6 nm wide dark line in cross-sectional views. Numerous vesicles associated with the cisternal margins carry a non-clathrin type of coat. A trans Golgi network with clathrin coated vesicles is associated with all Golgi stacks except those of old peripheral cells. It is easily distinguished from trans cisternae by its blebbing morphology and staining pattern. The zone of ribosome exclusion includes both the Golgi stack and the trans Golgi network.Intercisternal elements are located exclusively between trans cisternae of columella and peripheral cells, but not meristematic cells. In older peripheral cells only trans cisternae exhibit slime-related staining. Golgi stacks possessing intercisternal elements also contain parallel rows of freeze-fracture particles in their trans cisternal membranes. We propose that intercisternal elements serve as anchors of enzyme complexes involved in the synthesis of polysaccharide slime molecules to prevent the complexes from being dragged into the forming secretory vesicles by the very large slime molecules. In addition, we draw attention to the similarities in composition and apparent site of synthesis of xyloglucans and slime molecules.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

12.
RCA I-binding patterns of the Golgi apparatus   总被引:2,自引:0,他引:2  
The distribution in the Golgi apparatus of binding sites for the galactose-specific Ricinus communis I lectin (RCA I) was studied in differently specialized cells, including goblet cells and absorptive enterocytes of the rat small intestine as well as acinar cells of the rat embryonic pancreas and submandibular gland. For the purpose of localizing the binding reactions, a pre-embedment method using horseradish peroxidase for electron microscopic visualization, and a post-embedding technique making use of the colloidal gold system were employed. The reactions obtained, localizing cell constituents which contain saccharides with terminal or internal beta-D-galactosyl residues, labeled diverse Golgi subcompartments. The goblet cells showed intense RCA I staining of the cisternae of the trans side of the Golgi stacks. The reaction was weak in the medial cisternae and the cis side of the stacks mostly was devoid of label. In the absorptive cells, in addition to the RCA I reaction of trans Golgi elements, binding sites for this lectin were concentrated in the stacks' medial section. In the embryonic acinar cells, accessible galactosyl residues were either confined to the trans and/or medial cisternae, or distributed across elements of all the stacked saccules. In the latter stacks, the reactions mostly were weak in the cis cisternae and increased in intensity towards the trans side. As regards the respective labeling patterns, similar percentages were calculated for the early and late stages of development: they were approximately 62% for the pattern which showed RCA I label limited to trans/medial cisternae and approximately 38% for the "cis-to-trans"-distributed RCA I reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Transitional ER (tER) sites are ER subdomains that are functionally, biochemically and morphologically distinct from the surrounding rough ER. Here we have used confocal video microscopy to study the dynamics of tER sites and Golgi structures in the budding yeast Pichia pastoris. The biogenesis of tER sites is tightly linked to the biogenesis of Golgi, and both compartments can apparently form de novo. tER sites often fuse with one another, but they maintain a consistent average size through shrinkage after fusion and growth after de novo formation. Golgi dynamics are similar, although late Golgi elements often move away from tER sites towards regions of polarized growth. Our results can be explained by assuming that tER sites give rise to Golgi cisternae that continually mature.  相似文献   

14.
The cisternal maturation model proposes that secretory proteins transit the Golgi in cisternae that mature by the continuous retrograde transport of Golgi enzymes in vesicles. We have tested the hypothesis that de novo generation of transport intermediates containing medial, trans, and trans Golgi network (TGN) enzymes is reconstituted in vitro. Our analysis shows that the majority of transport is mediated by a steady state of transport intermediate production and consumption by Golgi cisternae, with only a minor contribution of pre-existing transport intermediates. Transport in the medial and trans regions of the stack involved intermediates containing Golgi enzymes, apparently moving in a retrograde direction. In contrast, transport between the trans Golgi and TGN was exclusively mediated by intermediates containing secretory protein, as expected for anterograde transport. These intermediates may be physiologically relevant, because only these two specific types of intermediates can be detected in cell homogenates. By analogy to the coatomer (COPI)-independent transport of Golgi enzymes to the endoplasmic reticulum, the steady-state production of intra-Golgi transport intermediates was not impaired by inhibition of COPI vesicle formation. These data suggest a model for COPI-independent intra-Golgi transport by cisternal maturation with a shift in mechanism to anterograde transport at the trans Golgi and TGN boundary.  相似文献   

15.
We have determined the subcellular distribution of fucosyl residues in rat duodenal absorptive enterocytes and goblet cells, using the binding affinity of the lectin I of Ulex europaeus (UEA I). In absorptive enterocytes, UEA I-lectin gold complexes were detected at the brush border and at the basolateral plasma membrane; pits of the plasma membrane were labeled, as were small vesicles, multivesicular bodies, lysosomes, and the Golgi apparatus. In the Golgi stacks, about half of the cisternae showed gold marker particles: accessible fucosyl residues were sparse in the cis subcompartment, the cismost cisterna mostly remaining negative; more intense label was found in medial cisternae; reactions were concentrated in the trans and transmost Golgi subcompartments. Cisternae, tubules and vesicles located at the trans Golgi side were the most constantly and intensely stained Golgi elements. In goblet cells, mucin granules and trans Golgi cisternae were labeled. Rarely, UEA I-gold bound to cisternae of the medial subcompartment; the cis subcompartment remained unstained. In part, UEA I-gold particles were restricted to dilated portions of the transmost Golgi cisterna and to secretory granules.  相似文献   

16.
 Golgi apparatus of both plant and animal cells are characterized by an extensive system of approximately 30 nm diameter peripheral tubules. The total surface area of the tubules and associated fenestrae is thought to be approximately equivalent to that of the flattened portions of cisternae. The tubules may extend for considerable distances from the stacks. The tubules are continuous with the peripheral edges of the stacked cisternae, but the way they interconnect differs across the stack. In plant cells, for example, tubules associated with the near-cis and mid cisternae often begin to anastomose close to the peripheral edges of the stacked cisternae, whereas the tubules of the trans cisternae are less likely to anastomose and are more likely to be directly continuous with the peripheral edges of the stacked cisternae. Additionally, the tubules may blend gradually into fenestrae that surround some of the stack cisternae. Because of the large surface area occupied by tubules and fenestrae, it is reasonable to suppose that these components of the Golgi apparatus play a significant role in Golgi apparatus function. Tubules clearly interconnect closely adjacent stacks of the Golgi apparatus and may represent a communication channel to synchronize stack function within the cell. A feasible hypothesis is that tubules may be a potentially static component of the Golgi apparatus in contrast to the stacked cisternal plates which may turn over continuously. The coated buds associated with tubules may represent the means whereby adjacent Golgi apparatus stacks exchange carbohydrate-processing enzymes or where resident Golgi apparatus proteins are introduced into and out of the stack during membrane flow differentiation. The limited gradation of tubules from cis to medial to trans offers additional possibilities for functional specialization of Golgi apparatus in keeping with the hypothesis that tubules are repositories of resident Golgi apparatus proteins protected from turnover during the flow differentiation of the flattened saccules of the Golgi apparatus stack. Accepted: 3 November 1997  相似文献   

17.
To delineate the traffic route through the Golgi apparatus followed by newly synthesized lysosomal enzymes, we subfractionated the Golgi apparatus of rat liver by preparative free-flow electrophoresis into cisternae fractions of increasing content of trans face markers and decreasing contents of markers for the cis face. NADPase was used to mark median cisternae. Beta-Hexosaminidase, the high mannose oligosaccharide processing enzyme, alpha-mannosidase II, the two enzymes involved in the biosynthesis of the phosphomannosyl recognition marker, and the phosphomannosyl receptor itself decreased in specific activity or amount from cis to trans. Additionally, these activities were observed in a fraction consisting predominantly of cisternae, vesicles and tubules derived from trans-most Golgi apparatus elements. These results, along with preliminary pulse-labeling kinetic data for the phosphomannosyl receptor, suggest that lysosomal enzymes enter the Golgi apparatus at the cis face, are phosphorylated, and appear in trans face vesicles by a route whereby the phosphomannosyl receptor bypasses at least some median and/or trans Golgi apparatus cisternae.  相似文献   

18.
In the accompanying paper (Griffiths, G., P. Quinn, and G. Warren, 1983, J. Cell Biol., 96:835-850), we suggested that the Golgi stack could be divided into functionally distinct cis, medial, and trans compartments, each comprising one or two adjacent cisternae. These compartments were identified using Baby hamster kidney (BHK) cells infected with Semliki Forest virus (SFV) and treated with monensin. This drug blocked intracellular transport but not synthesis of the viral membrane proteins that were shown to accumulate in the medial cisternae. In consequence, these cisternae bound nucleocapsids. Here we show that this binding markedly increased the density of the medial cisternae and allowed us to separate them from cis and trans Golgi cisternae. A number of criteria were used to show that the intracellular capsid-binding membranes (ICBMs) observed in vivo were the same as those membranes sedimenting to a higher density in sucrose gradients in vitro, and this separation of cisternae was then used to investigate the distribution, within the Golgi stack, of some specific Golgi functions. After labeling for 2.5 min with [3H]palmitate, most of the fatty acid attached to viral membrane proteins was found in the ICBM fraction. Because the viral membrane proteins appear to move from cis to trans, this suggests that fatty acylation occurs in the cis or medial Golgi cisternae. In contrast, the distribution of alpha 1-2- mannosidase, an enzyme involved in trimming high-mannose oligosaccharides, and of galactosyl transferase, which is involved in the construction of complex oligosaccharides, was not affected by monensin treatment. Together with data in the accompanying paper, this would restrict these two Golgi functions to the trans cisternae. Our data strongly support the view that Golgi functions have specific and discrete locations within the Golgi stack.  相似文献   

19.
Baby hamster kidney (BHK) cells were infected with Semliki Forest virus (SFV) and, 2 h later, were treated for 4 h with 10 microM monensin. Each of the four to six flattened cisternae in the Golgi stack became swollen and separated from the others. Intracellular transport of the viral membrane proteins was almost completely inhibited, but their synthesis continued and they accumulated in the swollen Golgi cisternae before the monensin block. In consequence, these cisternae bound large numbers of viral nucleocapsids and were easily distinguished from other swollen cisternae such as those after the block. These intracellular capsid-binding membranes (ICBMs) were not stained by cytochemical markers for endoplasmic reticulum (ER) (glucose-6-phosphatase) or trans Golgi cisternae (thiamine pyrophosphatase, acid phosphatase) but were labeled by Ricinus communis agglutinin I (RCA) in thin, frozen sections. Since this lectin labels only Golgi cisternae in the middle and on the trans side of the stack (Griffiths, G., R. Brands, B. Burke, D. Louvard, and G. Warren, 1982, J. Cell Biol., 95:781-792), we conclude that ICBMs are derived from Golgi cisternae in the middle of the stack, which we term medial cisternae. The overall movement of viral membrane proteins appears to be from cis to trans Golgi cisternae (see reference above), so monensin would block movement from medial to the trans cisternae. It also blocked the trimming of the high-mannose oligosaccharides bound to the viral membrane proteins and their conversion to complex oligosaccharides. These functions presumably reside in trans Golgi cisternae. This is supported by data in the accompanying paper, in which we also show that fatty acids are covalently attached to the viral membrane proteins in the cis or medial cisternae. We suggest that the Golgi stack can be divided into three functionally distinct compartments, each comprising one or two cisternae. The viral membrane proteins, after leaving the ER, would all pass in sequence from the cis to the medial to the trans compartment.  相似文献   

20.
The reaction patterns of the Golgi apparatus following staining with the lectins concanavalin A (ConA), Ricinus communis I agglutinin (RCA I), and Helix pomatia lectin (HPA) were studied in the pancreas acinar cells of rat embryos in the course of cell differentiation from day 13 through day 20 of gestation. The binding reactions were localized by means of pre-embedment incubation of 10-microns-thick cryosections of pancreas tissue, prefixed in a mixture of 4% formaldehyde/0.5% glutaraldehyde, using horseradish peroxidase for electron microscope visualization. ConA, which preferentially binds to alpha-D-mannosyl residues, consistently stained the cisternae of the cis Golgi side. The majority of the stacks also showed ConA staining of medial cisternae. The reaction of the trans side was variable; in each stage of development, the cisternae of the trans Golgi side either were devoid of labeling or appeared intensely stained. The reactions obtained with RCA I, which recognizes terminal beta-D-galactosyl residues, changed in the course of cell differentiation; in the protodifferentiated and early differentiated states, the system of "rigid lamellae," located at the trans side of the Golgi stacks, was intensely labeled, but became unreactive after production of secretion granules had started, the reaction then being restricted to the stacked saccules. In regard to the Golgi stacks in each of the developmental stages, RCA I binding sites either were confined to the trans cisternae, or, in addition, were found distributed across elements of the medial and cis compartments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号