首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of membrane microviscosity on mu-opioid agonist and antagonist binding, as well as agonist efficacy, was examined in membranes prepared from SH-SY5Y cells and from a C6 glioma cell line stably expressing the rat mu-opioid receptor (C6mu). Addition of cholesteryl hemisuccinate (CHS) to cell membranes increased membrane microviscosity and reduced the inhibitory effect of sodium and guanine nucleotides on the affinity of the full agonists sufentanil and [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAMGO) for the mu-opioid receptor. Binding of the antagonists [3H]naltrexone and [3H]diprenorphine and the partial agonist nalbuphine was unaffected by CHS. The effect of CHS on agonist binding was reversed by subsequent addition of cis-vaccenic acid, suggesting that the effect of CHS is the result of increased membrane microviscosity and not a specific sterol-receptor interaction. CHS addition increased the potency of DAMGO to stimulate guanosine-5'-O-(3-[35S]thio)triphosphate binding by fourfold, whereas the potency of nalbuphine was unaffected. However, nalbuphine efficacy relative to that of the full agonist DAMGO was strongly increased in CHS-treated membranes compared with that in control membranes. Membrane rigidification also resulted in an increased efficacy for the partial agonists meperidine, profadol, and butorphanol relative to that of DAMGO as measured by agonist-stimulated GTPase activity in control and CHS-modified membranes. These findings support a regulatory role for membrane microviscosity in receptor-mediated G protein activation.  相似文献   

2.
In synaptosomal membranes from rat and monkey brain cortex, the addition of petroselenic (18:1, cis-delta 6) acid, oleic (18:1, cis-delta 9) acid, and vaccenic (18:1, cis-delta 11) acid or their corresponding methyl esters at 0.5 mumol/mg of membrane protein caused a similar 7-10% decrease in the microviscosity of the membrane core, whereas at the membrane surface the microviscosity was reduced 5-7% by the fatty acids but only 1% by their methyl esters. Concomitantly, the fatty acids, but not the methyl esters, inhibited the specific binding of the tritiated mu-, delta-, and kappa-opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol (DAMGO), [D-Pen2,D-Pen5]enkephalin (DPDPE), and U69,593, respectively. As shown with oleic acid, the sensitivity of opioid receptor binding toward inhibition by fatty acids was in the order delta greater than mu much greater than kappa, whereby the binding of [3H]DPDPE was abolished, but significant inhibition of [3H]U69,593 binding, determined in membranes from monkey brain, required membrane modification with a twofold higher fatty acid concentration. Except for the unchanged KD of [3H]U69,593, the inhibition by oleic acid involved both the Bmax and affinity of opioid binding. Cholesteryl hemisuccinate (0.5-3 mumol/mg of protein), added to membranes previously modified by fatty acids, reversed the fluidization caused by the latter compounds and restored inhibited mu-, delta-, and kappa-opioid binding toward control values. In particular, the Bmax of [3H]-DPDPE binding completely recovered after being undetectable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: SH-SY5Y neural cells expressing μ- and δ-opioid receptors were maintained viable in isotonic, sodium-free buffer in vitro. Intracellular sodium levels were manipulated by various methods, and ligand binding to intact cells was studied. In physiological buffer containing 118 mM sodium, [3H]Tyr-d -Ala-Gly-(Me)Phe-Gly-ol ([3H]-DAMGO) and [3H]naltrexone bound to μ receptor with KD values of 3.1 and 0.32 nM and Bmax values of 94 and 264 fmol/mg of protein, respectively. Replacement of sodium by choline decreased the affinity of the antagonist and increased Bmax for [3H]DAMGO, without significantly affecting the other corresponding binding parameters. Depolarizing concentrations of KCl (34 mM) in physiological buffer decreased the intracellular sodium levels by 67%, but this did not decrease the [3H]DAMGO binding to the cells. Incubation of cells with monensin and ouabain increased the intracellular sodium levels dramatically (from 78 to 250 and 300 nmol/mg, respectively), with no changes in agonist binding parameters. Ethylisopropylamiloride inhibited [3H]DAMGO and [3H]naloxone binding to intact cells with EC50 values of 24 and 3,600 nM, respectively. Adenylyl cyclase activities measured in intact cells, at different concentrations of sodium, showed the physiological significance of this ion in signal transduction. Potency of DAMGO in inhibiting the forskolin-stimulated adenylyl cyclase activity was significantly higher at lower concentrations of sodium. However, inhibition reached the maximal level only at 50 mM sodium, and typical sigmoidal dose-response curves were obtained only in the presence of 118 mM sodium. Furthermore, even at low or high intracellular sodium levels, DAMGO inhibition of cyclic AMP levels was normal. These results support a role for extracellular sodium in regulating not only the ligand interactions with the receptor, but also the signal transduction through the μ receptor.  相似文献   

4.
Abstract: The specific opioid receptor antagonist naloxone attenuates the behavioral and neurochemical effects of amphetamine. Furthermore, the amphetamine-induced increase in locomotor activity is attenuated by intracisternally administered naltrindole, a selective δ-opioid receptor antagonist, but not by the irreversible μ-opioid receptor antagonist β-funaltrexamine. Therefore, this research was designed to determine if naltrindole would attenuate the neurochemical response to amphetamine as it did the behavioral response. In vivo microdialysis was used to monitor the change in extracellular concentrations of dopamine in awake rats. Naltrindole (3.0, 10, or 30 µg) or vehicle was given 15 min before and β-funaltrexamine (10 µg) or vehicle 24 h before the start of cumulative dosing, intracisternally in a 10-µl volume, while the rats were lightly anesthetized with methoxyflurane. Cumulative doses of subcutaneous d-amphetamine (0.0, 0.1, 0.4, 1.6, and 6.4 mg/kg) followed pretreatment injections at 30-min intervals. Dialysate samples were collected every 10 min from either the striatum or nucleus accumbens and analyzed for dopamine content by HPLC. Amphetamine dose-dependently increased dopamine content in both the striatum and nucleus accumbens, as reported previously. Naltrindole (3.0, 10, and 30 µg) significantly reduced the dopamine response to amphetamine in the striatum. In contrast, 30 µg of naltrindole did not modify the dopamine response to amphetamine in the nucleus accumbens. On the other hand, β-funaltrexamine (10 µg) had no effect in the striatum but significantly attenuated the amphetamine-induced increase in extracellular dopamine content in the nucleus accumbens. These data suggest that δ-opioid receptors play a relatively larger role than μ-opioid receptors in mediating the amphetamine-induced increase in extracellular dopamine content in the striatum, whereas μ-opioid receptors play a larger role in mediating these effects in the nucleus accumbens.  相似文献   

5.
An opioid receptor agonist, [D-Ala2,Me-Phe4,Glyol5]enkephalin (DAMGE), decreased [3H]thymidine incorporation into DNA of fetal rat brain cell aggregates. This action proved to depend on the dose of this enkephalin analog and the interval the aggregates were maintained in culture. The opioid antagonist naltrexone and the mu-specific antagonist cyclic D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP) reversed the DAMGE effect, arguing for a receptor-mediated mechanism. The mu-opioid nature of this receptor was further established by inhibiting DNA synthesis with the highly mu-selective agonist morphiceptin and blocking its action with CTOP. Several other opioids, pertussis toxin, and LiCl also diminished DNA synthesis, whereas cholera toxin elicited a modest increase. Naltrexone completely reversed the inhibition elicited by the combination of DAMGE and low doses of LiCl but not by that of high levels of LiCl alone. The enkephalin analog also reduced basal [3H]inositol trisphosphate and glutamate-stimulated [3H]inositol monophosphate and [3H]inositol bisphosphate accumulation in the aggregates. These DAMGE effects were reversed by naltrexone and were temporally correlated with the inhibition of DNA synthesis. A selective protein kinase C inhibitor, chelerythrine, also inhibited thymidine incorporation dose-dependently. The effect of DAMGE was not additive in the presence of chelerythrine but appeared to be consistent with their actions being mediated via a common signaling pathway. These results suggest the involvement of the phosphoinositol signal transduction system in the modulation of thymidine incorporation into DNA by DAMGE.  相似文献   

6.
7.
The relative subcellular distributions of mu-opioid receptors and guanine nucleotide binding regulatory proteins (G proteins) in 1-day-old (P1) and adult rat forebrain were compared. Light membranes (LMs) were resolved from heavy membranes (HM) by sucrose density gradient centrifugation. Marker enzyme analyses indicated that LMs contained most of the endoplasmic reticulum and Golgi complexes, whereas HMs were enriched in plasma membranes. Binding distribution and properties of mu-opioid sites were assessed using [3H] [D-Ala2,Me-Phe4,Gly-ol5]enkephalin. P1 LMs possessed 43% of the total mu-opioid binding detected compared to 16% in the adult. Although NaCl inhibited mu binding in LMs to a greater extent than in HMs, age-dependent differences were not observed. P1 LM mu binding possessed greater sensitivity to 5'-guanylylimidodiphosphate than their adult counterpart. Moreover, P1 LMs contained more Go alpha protein than P1 HMs or adult LMs, as demonstrated by immunoblotting with antisera against Go alpha after one- or two-dimensional gel electrophoresis. These results suggest that P1 LMs contain a greater proportion of newly synthesized intracellular mu sites than adult LMs.  相似文献   

8.
Abstract: We report the isolation and characterization of a rat cDNA clone encoding a μ-opioid receptor. This receptor, a 398 amino acid protein, shares 59% overall identity with the mouse Δ-and K -opioid receptors. Transient expression of the receptor in COS cells revealed high-affinity binding of μ-selective opioid antagonists and agonists, with a K D for naloxone ∼1.5 n M , and for [D-Ala2, N -Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and morphine at the high-affinity site of 2–4 n M , confirming a μ-opioid pharmacological profile. Northern blotting and in situ hybridization histoohemistry revealed that the μ-opioid receptor mRNA was expressed in many brain regions, including cerebral cortex, caudate putamen, nucleus accumbens, olfactory tubercle, septal nuclei, thalamus, hippocampus, and medial habenular nucleus, in keeping with the known distribution of the μ-opioid receptor.  相似文献   

9.
Abstract: Thymidine incorporation into DNA was inhibited dose-dependently by β-endorphin in rat fetal brain cell aggregate cultures. The inhibition was reversed partially by μ (cyclic D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide) or k (norbinaltorphimine) antagonists. Complete blockade of the β-endorphin inhibitory effect was achieved only on concomitant exposure to both antagonists. Eadie–Hofstee analysis revealed that β-endorphin inhibited thymidine incorporation noncompetitively. In the presence of protease inhibitors, β-endorphin decreased thymidine incorporation with an IC50 of 0.7 n M . Truncated and N -acetylated β-endorphin derivatives, which bind with low affinity to opioid receptors, did not affect thymidine incorporation. These findings indicate that β-endorphin at physiological concentrations can regulate thymidine incorporation in cultured brain cells.  相似文献   

10.
Abstract: Recent studies on chimeric μ/δ-, μ/κ- and δ/κ-opioid receptors have suggested that extracellular loops of the receptors were involved in the discriminatory binding of selective ligands by controlling their entry into the transmembrane binding site. Since homochimeric opioid receptors are mostly informative in terms of selectivity, the role of extracellular loops was examined here by studying heterochimeric μ receptors where the totality or parts of extracellular loops were replaced by the corresponding regions of the receptor for angiotensin II. Chimeric μ receptors with extracellular loop EL1 or EL3 originating from the angiotensin receptor had 100-fold decreased affinities for opioids; the length of the first extracellular loop, which is one residue longer in angiotensin than μ receptors, was shown to be responsible for this situation. Substitution of the μ receptor second extracellular loop by that of the angiotensin receptor diminished by ∼10-fold the affinities for opioids. Since all chimeras had altered affinities for selective and nonselective ligands, we propose that extracellular domains of the μ receptor, particularly the first and third loops, constrain the relative positioning of the connected transmembrane domains where selective as well as nonselective contact points form the opioid binding site.  相似文献   

11.
The present study deals with the concentration and fatty acid composition of cholesterol esters in rat brains infected experimentally with measles virus to induce acute encephalitis. The left side of the cerebrum, as well as other portions of the brain, when inoculated percutaneously contained a large amount of cholesterol esters. The major fatty acids from the esters in the brain were C16:0, C16:1, C18:0, and C18:1; those from the serum were C18:1, C18:2, and C20:4. This result indicates that cholesterol esters may not come from serum but can be synthesized in situ, even in the brain with acute viral infection.  相似文献   

12.
Abstract: The identities of heterotrimeric G proteins that can interact with the μ-opioid receptor were investigated by α-azidoanilido[32P]GTP labeling of α subunits in the presence of opioid agonists in Chinese hamster ovary (CHO)-MORIVA3 cells, a CHO clone that stably expressed μ-opioid receptor cDNA (MOR-1). This clone expressed 1.01 × 106μ-opioid receptors per cell and had higher binding affinity and potency to inhibit adenylyl cyclase for the μ-opioid-selective ligands [d -Ala2,N-MePhe4,Gly-ol]-enkephalin and [N-MePhe3,d -Pro4]-morphiceptin, relative to the δ-selective opioid agonist [d -Pen2,d -Pen5]-enkephalin or the κ-selective opioid agonist U-50,488H. μ-Opioid ligands induced an increase in α-azidoanilido[32P]GTP photoaffinity labeling of four Gα subunits in this clone, three of which were identified as Gi3α, Gi2α, and Go2α. The same pattern of simultaneous interaction of the μ-opioid receptor with multiple Gα subunits was also observed in two other clones, one expressing about three times more and the other 10-fold fewer receptors as those expressed in CHO-MORIVA3 cells. The opioid-induced increase of labeling of these G proteins was agonist specific, concentration dependent, and blocked by naloxone and by pretreatment of these cells with pertussis toxin. A greater agonist-induced increase of α-azidoanilido[32P]GTP incorporation into Gi2α (160–280%) and Go2α (110–220%) than for an unknown Gα (G?α) (60%) or Gi3α (40%) was produced by three different μ-opioid ligands tested. In addition, slight differences were also found between the ability of various μ-opioid agonists to produce half-maximal labeling (ED50) of any given Gα subunit, with a rank order of Gi3α > Go2α > Gi2α = G?α. In any case, these results suggest that the activated μ-opioid receptor couples to four distinct G protein α subunits simultaneously.  相似文献   

13.
Differences in binding properties of mu and delta opioid receptors were investigated using DAGO (Tyr-D-Ala-Gly-MePhe-Gly-ol) and DTLET (Tyr-D-Thr-Gly-Phe-Leu-Thr), which occur, respectively, as the most selective mu and delta radioligands available. At high concentration, each agonist is able to interact with its nonspecific sites. Competition experiments indicated that a two-site competitive model was adequate to explain the interactions of DAGO and DTLET with [3H]DTLET and [3H]DAGO binding sites, respectively. The weak cross-reactivity (congruent to 10%) of DTLET for mu sites was taken into account in these experiments. On the other hand, DAGO and DTLET exhibit differential binding kinetics. Thus, at 35 degrees C, the lifetime of DTLET within its receptor site is about 14 times longer than that of the mu agonist. Sodium and manganese ions decrease the maximal number of high affinity mu and delta sites, but the sensitivity of mu receptors is three times higher towards Na+ and 20-fold higher towards Mn2+ than that of delta receptors. GTP reduces similarly the mu and delta binding whereas only the DAGO binding was modified by the nonhydrolyzable analogue guanylylimidodiphosphate [GMP-P(NH)P]. However, in the presence of Na+ ions, GMP-P(NH)P inhibits the DTLET binding in a concentration-dependent manner. The effects of Na+ and GMP-P(NH)P could be explained by a sequential transformation of delta receptors to low-affinity states. This model predicts that Na+, by lowering the affinity of a fraction of sites, produces a decrease in the maximal number of high-affinity delta receptors and that GMP-P(NH)P enhances the Na+ effect. Moreover, the binding kinetic to this high-affinity state was also modified by Na+ and nucleotides. All of these data support the existence of two independent mu and delta binding sites, the properties of which are differentially regulated by these endogenous effectors.  相似文献   

14.
Abstract: Voltage-dependent Ca2+ currents were measured in NG108-15 neuroblastoma × glioma hybrid cells transformed to express the rat μ-opioid receptor by the whole-cell configuration of the patch-clamp technique with Ba2+ as charge carrier. A μ-opioid receptor-selective agonist, [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin caused significant inhibition of voltage-dependent Ca2+ currents in μ-receptor-transformed NG108-15 cells but not in nontransfected or vector-transformed control cells. On the other hand, a δ-opioid receptor-selective agonist, [ d -penicillamine2, d -penicillamine5]enkephalin, induced inhibition of voltage-dependent Ca2+ currents in both control and μ-receptor-transformed cells, which is mediated by the δ-opioid receptor expressed endogenously in NG108-15 cells. The inhibition of voltage-dependent Ca2+ currents induced by [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin and [ d -penicillamine2, d -penicillamine5]enkephalin was reduced by pretreatment of the cells with pertussis toxin or ω-conotoxin GVIA. These results indicate that the μ-opioid receptor expressed from cDNA functionally couples with ω-conotoxin-sensitive N-type Ca2+ channels through the action of pertussis toxin-sensitive G proteins in NG108-15 cells.  相似文献   

15.
In synaptosomal membranes from rat brain cortex, in the presence of 150 mM NaCl, the opioid antagonist [3H]naltrexone bound to two populations of receptor sites with affinities of 0.27 and 4.3 nM, respectively. Guanosine-5'-(3-thiotriphosphate) had little modulating effect and did not alter the biphasic nature of ligand binding. On the other hand, receptor-selective opioids differentially inhibited the two binding components of [3H]naltrexone. As shown by nonlinear least-squares analysis, the mu opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol or sufentanil abolished high-affinity [3H]naltrexone binding, whereas the delta-selective ligands [D-Pen2,D-Pen5]enkephalin, ICI 174,864, and oxymorphindole inhibited and eventually eliminated the low-affinity component in a concentration-dependent manner. These results indicate that, in contrast to the guanine nucleotide-sensitive biphasic binding of opioid-alkaloid agonists, the heterogeneity of naltrexone binding in brain membranes reflects ligand interaction with different opioid-receptor types.  相似文献   

16.
Abstract: A μ-opioid receptor protein (μ-ORP) purified to homogeneity from bovine striatal membranes has been functionally reconstituted in liposomes with highly purified heterotrimeric guanine nucleotide regulatory proteins (G proteins). A mixture of bovine brain G proteins, predominantly GoA, was used for most of the experiments, but some experiments were performed with individual pure G proteins, GoA, GoB, Gi1, and Gi2. Low K m GTPase was stimulated up to 150% by μ-opioid receptor agonists when both μ-ORP and a G protein (either the brain G protein mixture or a single heterotrimeric G protein) were present in the liposomes. Stimulation by a selective μ-agonist was concentration dependent and was reversed by the antagonist (−)-naloxone, but not by its inactive enantiomer, (+)-naloxone. The μ selectivity of μ-ORP was demonstrated by the inability of δ and κ agonists to stimulate GTPase in this system. High-affinity μ-agonist binding was also restored by reconstitution with the brain G protein mixture and with each of the four pure Gi and Go proteins studied. The binding of μ agonists is sensitive to inhibition by GTPγS and by sodium.  相似文献   

17.
The human neuroblastoma clonal cell line SH-SY5Y expresses both mu- and delta-opioid receptors (ratio approximately 4.5:1). Differentiation with retinoic acid (RA) was previously shown to enhance the inhibition of adenylyl cyclase (AC) by mu-opioid agonists. We tested here the inhibition of cyclic AMP (cAMP) accumulation by morphine under a variety of conditions: after stimulation with prostaglandin E1 (PGE1), forskolin, and vasoactive intestinal peptide (VIP), both in the presence and in the absence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Morphine inhibition of the forskolin cAMP response (approximately 65%) was largely unaffected by the presence of IBMX. In contrast, deletion of IBMX enhanced morphine's inhibition of the PGE1 and VIP cAMP response from approximately 50 to approximately 80%. The use of highly mu- and delta-selective agents confirmed previous results that inhibition of cAMP accumulation by opioids is mostly mu, and not delta, receptor mediated in SH-SY5Y cells, regardless of the presence or absence of IBMX. Because of the large morphine inhibition and the high cAMP levels even in the absence of IBMX, PGE1-stimulated, RA-differentiated SH-SY5Y cells were subsequently used to study narcotic analgesic tolerance and dependence in vitro. Upon pretreatment with morphine over greater than or equal to 12 h, a fourfold shift of the PGE1-morphine dose-response curve was observed, whether or not IBMX was added. However, mu-opioid receptor number and affinity to the mu-selective [D-Ala2, N-Me-Phe4, Gly5-ol]enkephalin were largely unaffected, and Na(+)- and guanyl nucleotide-induced shifts of morphine-[3H]naloxone competition curves were unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A study of the onset of cation and guanine nucleotide regulation of delta, mu, and kappa rat brain opioid receptors during postnatal development was undertaken. Site-specific binding assays were utilized for each receptor type and the effects of 0.5 mM MnCl2, 100 mM NaCl, and/or 50 microM guanosine-5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] were assessed. The most pronounced changes of opioid binding were seen in the presence of Mn2+. In adults, agonist binding to delta sites was stimulated by Mn2+, whereas that to mu sites was not affected and kappa binding was inhibited. The postnatal development of Mn2+ regulation for the three receptor subtypes was distinctly different. The largest effects were seen on delta sites detected in the early neonatal period, Mn2+ eliciting a 68% stimulation of binding over controls at day 1. Significant inhibition of kappa site binding by Mn2+ was detected only after the third postnatal week. Mn2+ caused a significant reversal of Gpp(NH)p inhibition of delta binding in the early neonatal period, exceeding that in the absence of regulators. Inhibition of mu and delta receptor binding by Na+ was greater, and the Mn2+ reversal of this effect was smaller, in the first 2 postnatal weeks than in adults. Gpp(NH)p + Na+ regulation did not change appreciably during the postnatal period. However, Mn2+ reversal of the considerable inhibition elicited by the combination of Na+ and Gpp(HN)p was developmental time-dependent. The data are discussed in terms of multiple sites of interaction for guanine nucleotides and cations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The role of glucocorticoids in the modulation of central alpha 2-receptor mechanisms was investigated by in vitro receptor binding studies. [3H]Clonidine and [3H]idazoxan were used as radioligands. The alpha 2-receptor subtypes and guanine nucleotide sensitivity were studied in homologue and heterologue displacement experiments following hydrocortisone treatment (25 mg/kg s.c.) for 10 days. High and low agonist affinity states of the alpha 2-receptor could be identified in 3H-antagonist-agonist and 3H-agonist-antagonist displacement experiments, which may correspond to different regulatory protein-nucleotide associated forms of the receptor. In the presence of 10 microM GTP, the high-affinity binding was depressed. Following hydrocortisone treatment, there was no detectable change either in the affinity or the binding site concentration of clonidine in homologue displacement ("cold saturation") experiments. The affinity of idazoxan, however, was depressed. The effect of GTP was similar to the controls in this experimental arrangement. In contrast, in heterologue binding studies the high-affinity binding site was not demonstrable and the amount of low-affinity binding increased following the hydrocortisone treatment. The high-affinity site reappeared in the presence of GTP. The change in GTP sensitivity suggests that the nucleotide regulatory system may be involved in the action of adrenal steroids on central alpha 2-receptoral mechanisms.  相似文献   

20.
Abstract: The κ-opioid receptor agonists including U-50,488H and dynorphin A (1–17) in ranges of 0.1–100 n M inhibited the hydrolysis of GTP to GDP (Pi release) inherent in GTP-binding proteins (G proteins) in guinea pig cerebellar membranes. U-50,488H inhibited only high-affinity GTPase activity, not low-affinity activity. The action of this agonist was found to be biphasic, and there was no inhibition at concentrations >1 µ M . The inhibition was abolished by pretreatment with preactivated pertussis toxin (PTX) at concentrations >1 µg/ml but not with preactivated cholera toxin (30 µg/ml). Similar blockade of κ-receptor-mediated inhibition was also observed when membranes were pretreated with a low concentration (8 µ M ) of N -ethylmaleimide (NEM) at low temperature (4°C), which alkylates the cysteine residue to be ADP-ribosylated by PTX; but this treatment caused no significant change in κ-agonist binding. When purified Gi1, but not Go, was reconstituted into membranes pretreated with NEM, the κ-receptor-mediated inhibition was recovered. These findings suggest that a subtype of κ-opioid receptor is coupled to inhibition of intrinsic activity of Gi1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号