首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aspartic protease, cathepsin E, has been shown to specifically cleave big endothelin (big ET-1) at the Trp21-Val22 bond to produce endothelin (ET-1) and the corresponding C-terminal fragment. To determine whether cathepsin E is a physiologically relevant endothelin converting enzyme (ECE), three novel and potent inhibitors of cathepsin E were administered to conscious rats prior to a pressor challenge with big ET-1. One of the inhibitors of cathepsin E, SQ 32,056 (3 mg/kg i.v.), blocked the big ET-1 response. However, this dose of SQ 32,056 also blocked the pressor response to ET-1. Phosphoramidon specifically inhibited the Big ET-1 pressor response. These results suggest that ECE is not cathepsin E.  相似文献   

2.
Based on our previous findings that phosphoramidon-sensitive endothelin (ET) converting enzyme (ECE) converts human big ET-1 but does not big ET-3, we investigated structural requirement for substrate peptide. We prepared shorter peptides of big ET-1 and measured hydrolysis of the Trp-Val bond of these peptides. Relative hydrolysis ratios of big ET-1(1-38), (1-37), (16-37), (1-31) and (17-26) were 1, 1.15, 3.71, 0.01 and 0, respectively. In addition, big ET-2 and big ET-3 were not significantly converted by ECE. These results suggest that the carboxyl-terminal sequence at residues 32-37 of big ET-1 is important for conversion, whereas the amino-terminal disulfide loop structure appears to interfere with access of ECE to big ET-1.  相似文献   

3.
We propose a candidate for the "putative" endothelin (ET) converting enzyme in the cultured endothelial cells (ECs) of bovine carotid artery. The enzyme is membrane-bound, soluble in 0.5% Triton X-100, and capable of converting human big ET-1 to ET-1 by a specific cleavage between Trp21 and Val22. The conversion reached 90% after a 5-hr incubation in the presence of DFP, PCMS and pepstatin A, but it was inhibited by EDTA, omicron-phenanthroline or phosphoramidon. The enzyme is very sensitive to pH, and active only between pH 6.6 and pH 7.6. Conversion of big ET-3 by this enzyme was only 1/9 that of big ET-1. From these results, ET-1 converting enzyme in the bovine EC is most likely to be a membrane-bound, neutral metalloendopeptidase, which is much less susceptible to big ET-3.  相似文献   

4.
The presence of functional endothelin converting enzyme (ECE) activity in basilar artery ring segments was investigated by measuring the contractile and relaxant effects of big endothelin (ET)-1. Under resting tension conditions cumulative application of big ET1-1 elicited a concentration-related contraction with the concentration-effect curve (CEC) shifted to the right against ET-1 by a factor of 31 and 29 in segments with the endothelium intact or mechanically removed, respectively. Preincubation with the ET(A) receptor antagonist, BQ123, induced an apparently parallel rightwards shift without affecting the maximum contraction. This shift was more pronounced for ET-1 than for big ET-1. With the putative ECE inhibitor phosphoramidon (10(-3) M) in the bath a small rightwards shift of the CEC for big ET-1 was observed in control segments and a more marked one in de-endothelialized segments. In segments precontracted with prostaglandin (PG) F(2alpha) big ET-1 induced a significant although transient relaxation whereas ET-1 did not. However, in the presence of BQ123 both ET-1 and big ET-1 elicited concentration-related relaxation with a significantly higher maximum effect obtained with big ET-1. The potency was 13 fold higher for ET-1, which is markedly less than that found for contraction. The results, therefore, suggest 1) the presence of functional ECE-activity in the rat basilar artery wall, and 2) differences in the functional ECE activity located in the endothelium and media.  相似文献   

5.
This is the first report clearly demonstrating the presence of endothelin (ET) converting enzyme (ECE) in non-vascular cells (renal epithelial cell lines, MDCK and LLC-PK1). ECEs derived from these epithelial cells were very similar to the endothelial ECE in the following biochemical properties: 1) The optimum pH was 7.0; 2) the Km value for big ET-1 was approximately 30 microM; 3) the enzyme was potently inhibited by EDTA, o-phenanthroline and phosphoramidon; and 4) the enzyme did not convert big ET-2 or big ET-3. These data suggest that phosphoramidon-sensitive ECE is involved in the processing of big ET-1 to ET-1 in the renal tubule.  相似文献   

6.
Endothelin converting enzyme activities in the soluble fraction of cultured bovine aortic endothelial cells were characterized. The two major endothelin converting enzyme activities were eluted from a hydrophobic chromatography column and the elution profile of the endothelin converting enzyme activities was the same as that of cathepsin D activities. These activities had a same pH optimum at pH 3.5 and were effectively inhibited by pepstatin A. Furthermore, anti-cathepsin D antiserum absorbed these activities as well as cathepsin D activity. Immunoblotting analysis using the antiserum showed the major active fractions have immunostainable components of identical molecular weights with cathepsin D. From these results, we concluded that the major endothelin converting activities in the soluble fraction of endothelial cells are due to cathepsin D. In addition to these cathepsin D activities, a minor endothelin converting enzyme activity with an optimum pH at 3.5 was found, which does not have angiotensin I generating (cathepsin D) activity from renin substrate and needs much higher concentrations of pepstatin A to inhibit the activity than cathepsin D.  相似文献   

7.
Porcine big endothelin (big ET-39) at 1 nM, a concentration with no influence on contractile activity in isolated rat aorta, induced a slow-onset and sustained contraction by the pre-incubation with pepsin. When the incubation mixture of big ET-39 with pepsin was analyzed by high-performance liquid chromatography on an octadecyl silica column, two major products of pepsin hydrolysis were obtained; their amino acid sequences were identical with those of 21-residue endothelin (ET-21) and a C-terminal peptide of big ET-39, big ET (22-39), respectively. On the other hand, no degradation of ET-21 was observed by pepsin treatment. These results indicate that pepsin specifically cleaves a Trp21-Val22 bond in the big ET-39 molecule, producing ET-21 and big ET (22-39). Thus, the possibility that pepsin-like aspartic protease may participate in the conversion of big ET-39 to ET-21 in vivo warrants further attention.  相似文献   

8.
Inhibition of biological actions of big endothelin-1 by phosphoramidon   总被引:19,自引:0,他引:19  
Endothelin (ET)-1 and big ET-1 both caused contraction of isolated porcine coronary arteries, but the potency of big ET-1 was 1/100-1/200 that of ET-1. These responses were independent of the vascular endothelium. Phosphoramidon blocked the vasoconstriction caused by 30 nM big ET-1, but was ineffective on the action of 0.3 nM ET-1. Also in vivo, phosphoramidon had no effect on the ET-1-induced pressor actions, but blocked the pressor and airway-contractile responses to big ET-1 in rats and/or guinea pigs. Thus, it is likely that the vascular responses to exogenous big ET-1 are at least in part due to its conversion to ET-1 by a phosphoramidon-sensitive ET converting enzyme(s) in the vascular smooth muscle in vitro and in vivo.  相似文献   

9.
Using a specific and sensitive radioimmunoassay (RIA) for the carboxyl terminal tail of endothelin (ET) (His16-Trp21), we have confirmed the presence of the converting activity from synthetic human big ET-1 to ET-1 in the homogenate of cultured bovine aortic endothelial cells. The optimal pHs for the converting activities were found at pH 3.0 and pH 7.0. The activity at pH 3.0 was completely inhibited by pepstatin A, whereas the activity at pH 7.0 was not affected by known various protease inhibitors except EDTA and EGTA. When the products from big ET-1 were analyzed on an ODS and a CN columns, only ET-1 was detected at pH 7.0, but various ET-like immunoreactivities other than ET-1 were detected at pH 3.0. These findings strongly suggest that mature ET-1 is formed from big ET-1 in the endothelial cells by a metal-dependent neutral protease.  相似文献   

10.
Endothelin converting enzyme of bovine carotid artery smooth muscles   总被引:4,自引:0,他引:4  
This is the first report clearly demonstrating the presence of endothelin (ET) converting enzyme in vascular smooth muscle. Like cultured endothelial cells, noncultured vascular smooth muscle homogenate of bovine carotid arteries, converts human big ET- 1 to ET-1 at pH 3.0, pH 5.0 and pH 7.0, and the apparent ratio of these three activities is about 6:5:1, respectively. Peptides generated during incubation of the homogenate and big ET- 1 at the three pHs were identified as ET- 1 by radioimmunoassay and high performance liquid chromatography. The two acid enzymes are in the cytosol (103,000xg sup) and are inhibited by pepstatin A, while the neutral enzyme is sensitive to EDTA or phosphoramidon; 73% of the neutral enzyme activity was membrane-bound and the remainder (27%) cytosolic.  相似文献   

11.
Endothelin(ET)-1 and big ET-1 caused potent and sustained constriction of isolated guinea pig bronchus. The response to ET-1 was enhanced by phosphoramidon in a simple dose-related manner (0.01-1000 microM), while the response to big ET-1 was enhanced at lower doses (0.01-0.1 microM) but was suppressed at higher doses (100-1000 microM) of phosphoramidon. Big ET-1, when given intravenously (i.v.) to anesthetized guinea pigs, increased both bronchopulmonary inflation pressure and mean arterial blood pressure (2.5, 5, 10 nmol/kg i.v.). The pressor response to big ET-1 was attenuated by phosphoramidon dose-relatedly, while the pulmonary response was modified in a complex fashion composed of delayed onset and prolonged duration of action. These results suggest that ET converting as well as degrading enzymes coexist in the airway tissue and both enzymes are sensitive to phosphoramidon, so that phosphoramidon acts bifunctionally to reduce and stimulate the airway responses to big ET-1.  相似文献   

12.
A specific and sensitive assay has been established for measurement of endothelin converting activity in a tissue extract. This assay is based on measuring endothelin-1 generated from big endothelin-1 by endothelin converting enzyme (ECE) with radioimmunoassay using an endothelin C-terminal specific antibody. By using this assay, we purified and characterized ECE in bovine adrenomedullary chromaffin granules ECE was purified over 3,000 times by a combination of DEAE, hydrophobic and gel filtration chromatography. A molecular weight of ECE was estimated to be approximately 30,000 by gel filtration. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that ECE had three major components with estimated molecular weights of 45,000, 30,000 and 15,000 like bovine spleen cathepsin D. ECE had a pH optimum at 3.5 and was inhibited by pepstatin. These results strongly suggest that ECE is a cathepsin D-like aspartic protease.  相似文献   

13.
There is evidence that angiotensin II (Ang II) and endothelin-1 (ET-1) may interact in an additive or synergistic way during luteal regression. The aim of the study was to investigate real time changes in luteal tissue of angiotensin and endothelin system members in mRNA expression, tissue concentrations, tissue localization, and ACE (angiotensin converting enzyme) antagonist application after prostaglandin F(2alpha) (PG) induced (days 8-12) luteal regression in cow. Corpora lutea (CL) were collected by transvaginal ovaryectomy before and 2, 4, 12, 24, 48, and 64 hr (n = 5/time point) after PG injection. ACE mRNA expression (RT-PCR) increased continuously and peaked at 12, 24 hr; ECE-1 (endothelin converting enzyme) peaked at 12 hr, and both peptides in tissue (Ang II and ET-1) increased significantly and peaked at 24 hr. The expression of receptors for Ang II (AT1R and AT2R) did not change in contrast to ET receptors (ETR-A and ETR-B), which were up-regulated. Localization in tissue revealed very weak staining for Ang II and ET-1 before PG application followed by a clear increase of staining predominantly in large luteal cells, but also in endothelial cells. In two experiments, the attempt was made to block ACE by the antagonist captopril with two different doses. In both experiments with captopril, progesterone levels were not significantly different from controls. Ang II alone seems to be not essential for functional luteolysis in bovine system. In conclusion, the results suggest that both Ang II and ET-1 are in parallel up-regulated during luteal regression and may act as vasoconstrictors during functional luteolysis, but also as apoptosis inducer during functional/structural luteolysis.  相似文献   

14.
The biosynthetic pathway of endothelin (ET)-2 was analyzed in cultured ACHN cells. In the supernatant, we detected three ET-2-related peptides, ET-2, big ET-2(1-38) and big ET-2(22-38). Phosphoramidon decreased the amount of ET-2 and increased that of big ET-2(1-38) dose-dependently. The amount of big ET-2(1-37) did not significantly change. These results suggest that big ET-2 is composed of 38 and not 37 amino acid residues, and that a putative ET-2-converting enzyme (ECE-2) should be classified as a phosphoramidon-sensitive neutral metalloprotease, bearing a resemblance to the putative ET-1-converting enzyme (ECE-1) in endothelial cells.  相似文献   

15.
The potent smooth muscle agonist endothelin-1 (ET-1) is involved in the local control of seminiferous tubule contractility, which results in the forward propulsion of tubular fluid and spermatozoa, through its action on peritubular myoid cells. ET-1, known to be produced in the seminiferous epithelium by Sertoli cells, is derived from the inactive intermediate big endothelin-1 (big ET-1) through a specific cleavage operated by the endothelin-converting enzyme (ECE), a membrane-bound metalloprotease with ectoenzymatic activity. The data presented suggest that the timing of seminiferous tubule contractility is controlled locally by the cyclic interplay between different cell types. We have studied the expression of ECE by Sertoli cells and used myoid cell cultures and seminiferous tubule explants to monitor the biological activity of the enzymatic reaction product. Northern blot analysis showed that ECE-1 (and not ECE-2) is specifically expressed in Sertoli cells; competitive enzyme immunoassay of ET production showed that Sertoli cell monolayers are capable of cleaving big ET-1, an activity inhibited by the ECE inhibitor phosphoramidon. Microfluorimetric analysis of intracellular calcium mobilization in single cells showed that myoid cells do not respond to big endothelin, nor to Sertoli cell plain medium, but to the medium conditioned by Sertoli cells in the presence of big ET-1, resulting in cell contraction and desensitization to further ET-1 stimulation; in situ hybridization analysis shows regional differences in ECE expression, suggesting that pulsatile production of endothelin by Sertoli cells (at specific "stages" of the seminiferous epithelium) may regulate the cyclicity of tubular contraction; when viewed in a scanning electron microscope, segments of seminiferous tubules containing the specific stages characterized by high expression of ECE were observed to contract in response to big ET-1, whereas stages with low ECE expression remained virtually unaffected. These data indicate that endothelin-mediated spatiotemporal control of rhythmic tubular contractility might be operated by Sertoli cells through the cyclic expression of ECE-1, which is, in turn, dependent upon the timing of spermatogenesis.  相似文献   

16.
17.
Cardiovascular diseases are characterized by insulin resistance and elevated endothelin (ET)-1 levels. Furthermore, ET-1 induces insulin resistance. To elucidate this mechanism, six healthy subjects were studied during a hyperinsulinemic euglycemic clamp during infusion of (the ET-1 precursor) big ET-1 alone or after ET(A)- or ET(B)-receptor blockade. Insulin levels rose after big ET-1 with or without the ET(B) antagonist BQ-788 (P < 0.05) but were unchanged after the ET(A) antagonist BQ-123 + big ET-1. Infused glucose divided by insulin fell after big ET-1 with or without BQ-788 (P < 0.05). Insulin and infused glucose divided by insulin values were normalized by ET(A) blockade. Mean arterial blood pressure rose during big ET-1 with or without BQ-788 (P < 0.001) but was unchanged after BQ-123. Skeletal muscle, splanchnic, and renal blood flow responses to big ET-1 were abolished by BQ-123. ET-1 levels rose after big ET-1 (P < 0.01) in a similar way after BQ-123 or BQ-788, despite higher elimination capacity after ET(A) blockade. In conclusion, ET-1-induced reduction in insulin sensitivity and clearance as well as splanchnic and renal vasoconstriction are ET(A) mediated. ET(A)-receptor stimulation seems to inhibit the conversion of big ET-1 to ET-1.  相似文献   

18.
We have developed a rapid and convenient assay for measurement of the action of endothelin (ET) converting enzyme (ECE) using the scintillation proximity assay (SPA) principle. On incubation of [125I]big ET-1 at 37 degrees C for 0.5-6 hr with an enzyme preparation, the reaction was terminated by the addition of an ET-1-specific antibody formulated in a buffer designed to shift the pH to alkaline. The antibody was allowed to come to equilibrium for 1 hr at room temperature and the amount of ET-1 produced, detected in a single step by the addition of protein A SPA beads. Using this assay, ECE activities of enzyme preparations obtained from porcine cultured endothelial cells and rat lung were clearly detected. These activities were inhibited by phosphoramidon in a concentration-dependent manner. The SPA based assay is homogeneous requiring no separation steps and takes a half day to complete. This method is therefore suitable for the high throughput screening of potential ECE inhibitors.  相似文献   

19.
Endothelin-1 (ET-1), a 21 amino-acid potent vasoconstrictor peptide, is produced from the biologically inactive intermediate big ET-1 via an endoproteolytic cleavage between Trp-21 and Val-22 by endothelin converting enzyme (ECE). cDNA sequence analysis predicts that the two other members of the endothelin family, ET-2 and ET-3, are also generated from the corresponding intermediates called big ET-2 and big ET-3, respectively. The metalloproteinase inhibitor phosphoramidon inhibited the conversion of big ET-1 into mature ET-1 both in vivo and in cultured endothelial cells, suggesting that ECE may be a neutral metalloproteinase. In this study, we solubilized and partially purified ECE from the membrane fraction of porcine lung. Using gel filtration chromatography, we separated two distinct ECE activities, designated M1 (apparent molecular mass approx. 300 kDa) and M2 (approx. 65 kDa). Optimum pH for the cleavage of big ET-1 by M1 and M2 was 7.0 and 7.5, respectively. M1 efficiently converted human big ET-1(1–38) to ET-1, but not human big ET-2(1–37) or human big ET-3(1–41)-amide. In contrast, M2 converted both big ET-1 and big ET-2, but not big ET-3. M1 was inhibited by phosphoramidon (IC50 approx. 1 μM) but not by thiorphan or bacitracin. In contrast, M2 was inhibited by much lower concentrations of phosphoramidon (IC50 approx. 0.3 nM), as well as by thiorphan and bacitracin. ECE activity in M1 was able to bind to a concanavalin A-agarose column and was eluted by α-methyl-d-glucoside, indicating that the ECE is glycosylated. From these results, M1 and M2 from the porcine lung membrane are similar to the candidate of ECE in endothelial cells and neutral endopeptidase in kidney (EC 3.4.24.11), respectively. Taken in conjunction with the previous finding that neither thiorphan nor bacitracin affected the conversion of endogenously synthesized big ET-1 in cultured endothelial cells, we conclude that physiologically relevant ECE found in the endothelial cells is more similar to M1 than to M2.  相似文献   

20.
The subtype of endothelin receptor that mediates metabolic and hemodynamic effects of circulating endothelin was explored using perfused rat liver. Infusion of endothelin (ET)-1 or ET-3 into the portal vein at a concentration of 0.3 nM increased glucose and lactate output and decreased perfusion flow, although ET-3 was less effective than ET-1. The metabolic effects of ET-1 were observed even under costant-flow perfusion. Infusion of either sarafotoxin S6b or S6c, an ET(A)- or ET(B)-receptor agonist, mimicked the actions of ET-1 to an equal extent. The flow reduction and glucose production induced by ET-1 were partly attenuated by the ET(A)-receptor antagonist BQ485. By contrast, ET(B)-receptor antagonist BQ788 enhanced glucose production caused by ET-1 and ET-3 without affecting the hemodynamic change. The effects of ET-1 and ET-3 were almost totally inhibited by the combination of BQ485 and BQ788. These results suggest that both ET(A) and ET(B) receptors are involved in the metabolic and hemodynamic effects of circulating endothelin in rat liver, while the ET(A)-receptor-mediated action appears to be dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号