首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chronobiology international》2013,30(6):1001-1017
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60‐liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free‐running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free‐running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

2.
Light and temperature cycles are the most important synchronizers of biological rhythms in nature. However, the relative importance of each, especially when they are not in phase, has been poorly studied. The aim of this study was to analyze the entrainment of daily locomotor activity to light and/or temperature cycles in zebrafish. Under two constant temperatures (20°C and 26°C) and 12:12 light-dark (LD) cycles, zebrafish were most active during the day (light) time and showed higher total activity at the warmer temperature, while diurnalism was higher at 20°C than at 26°C (87% and 77%, respectively). Under thermocycles (12:12 LD, 26:20°C thermophase:chryophase or TC), zebrafish daily activity synchronized to the light phase, both when the thermophase and light phase were in phase (LD/TC) or in antiphase (LD/CT). Under constant dim light (3 lux), nearly all zebrafish synchronized to thermocycles (τ=24 h), although activity rhythms (60% to 67% of activity occurred during the thermophase) were not as marked as those observed under the LD cycle. Under constant dim light of 3 lux and constant temperature (22.5°C), 4 of 6 groups of zebrafish previously entrained to thermocycles displayed free‐running rhythms (τ=22.9 to 23.6 h). These results indicate that temperature cycles alone can also entrain zebrafish locomotor activity.  相似文献   

3.
The objective of this study was to investigate the entrainment of melatonin rhythms in rams using symmetrical light-dark cycles of different period length. Five groups of six He de France rams were kept in 12L: 12D for 7 weeks and then (i) 12L: 12D, (ii) 11L: 11D, (iii) 10L: 10D, (iv) 13L: 13D and (v) 14L: 14D for a further 3 weeks. Environmental factors other than the light dark cycle were not controlled. The onset and offset of the plasma melatonin rhythm in DD after 3 weeks of the respective light treatments was assessed for 48 hr, immediately after transferring to DD. The duration of secretion in DD was positively related to the length of the previous dark phase. The phase of the melatonin rhythm with respect to the anticipated dark phase suggested entrainment with no change in phase-relationship to the zeitgeber by 12L: 12D and 13L : 13D. Entrainment with a phase-delay or a phase-advance was apparent after 11L: 11D and 14L: 14D, but the individual rhythms were not all synchronized with respect to each other after 10L: 10D. Activity recordings for 2-3-week periods during 12L: 12D, 10L: 10D and 14L: 14D all showed a major 24-hr component at all times, with activity during the light phase in 12L: 12D. It appears that melatonin may be readily desynchronized from overt activity-rest cycles in sheep. The upper and lower entrainment limits are probably greater than 28 hr and close to 20 hr cycles, respectively.  相似文献   

4.
The multiple oscillatory basis of the mammalian circadian pacemaker is adduced by, among other phenomena, the occurrence of split locomotor activity rhythms in rodents after prolonged exposure to constant light. More recently, split rhythms entrained to a 24h light:dark:light:dark cycle have been documented following scheduled access of hamsters to a novel running wheel or by photoperiod manipulations alone. Because the incidence of constant light-induced splitting depends on light intensity, the role of this variable was assessed in this new splitting paradigm. Male Syrian hamsters, entrained to a 14h light:10h dark cycle, were transferred to individual running wheel cages 7h after light onset. Transfer coincided with the beginning of the scotophase of a new photocycle alternating between 5h of relative dark and 7h of light. For four weeks bright photophases (~350 lux) were alternated with either dim (<0.1 lux) or completely dark (0 lux) scotophases. An additional group received moderate intensity photophases (~45 lux) paired with dim scotophase illumination. For an additional four weeks, all hamsters were exposed to the same bright:dim light:dark cycle. Dim light in the scotophase significantly increased the incidence of split activity rhythms relative to that observed with completely dark scotophases. Overall wheel-running rates and activity induced by a cage change were also increased in dim light-exposed animals. Group differences largely disappeared four weeks later when hamsters previously maintained in completely dark scotophases were exposed to dim scotophases. Photophase light intensity did not affect the overall incidence of splitting, but influenced the timing of activity in the afternoon scotophase. The effects of dim illumination may be mediated in part via enhanced locomotor responses to transfer to a new cage or by changes in coupling interactions between component oscillators.  相似文献   

5.
The phase-shift (Δψ) responses of the circadian rhythm in the field mouse Mus booduga to brief light pulses (LPs) of 15 minutes duration and 1000 lux intensity were measured in 90 experiments. In each experiment, a resetting light pulse LP1 was administered at CT14 (CT, circadian time), and a scanning light pulse LP2 was then variously administered in separate experiments at CT16, CT20, and CT22 in the same and in the next circadian cycle. The Δψ obtained in all these two-pulse experiments did not differ significantly from theoretical values computed on the assumption that LP1 reset the phase response curve (PRC) rapidly. In each case, the steady-state Δψ observed after LP1 and LP2 differed significantly from the Δψ obtained at the same CT in determination of the single-pulse PRC (control) and also differed significantly from the values on the assumption of no Δψ in the PRC following LP1. These results indicate that the circadian pacemaker of M. booduga, as measured by its PRC, is substantially reset within 2h after a light pulse at CT14. (Chronobiology International 14(6), 537–548, 1997)  相似文献   

6.
Conventional wisdom holds that the circadian pacemaker of rodents and humans is minimally responsive to light of the intensity provided by dim moonlight and starlight. However, dim illumination (<0.005 lux) provided during the daily dark periods markedly alters entrainment in hamsters. Under dimly lit scotophases, compared to completely dark ones phases, the upper range of entrainment is increased by ~4 h, and re‐entrainment is accelerated following transfer from long to short day lengths. Moreover, the incidence of bimodal entrainment to 24 h light:dark:light:dark cycles is increased fourfold. Notably, the nocturnal illumination inducing these pronounced effects is equivalent in photic energy to that of a 2 sec, 100 lux light pulse. These effects may be parsimoniously interpreted as an action of dim light on the phase relations between multiple oscillators comprising the circadian pacemaker. An action of dim light distinct from that underlying bright‐light phase‐resetting may promote more effective entrainment. Together, the present results refute the view that scotopic illumination is environmental “noise” and indicate that clock function is conspicuously altered by nighttime illumination like that experienced under dim moonlight and starlight. We interpret our results as evidence for a novel action of dim light on the coupling of multiple circadian oscillators.  相似文献   

7.
Groups of photosensitive, unstimulated or stimulated, male blackheaded buntings were subjected to photoregimes of 15 hr of green light of three intensities and 9 hr of dark per day. In some groups green light was interrupted with 90 min of bright fluorescent light at different times in the subjective day. While gonads did not develop or regressed in some groups, birds in others behaved as if exposed to long daylengths. The results besides suggesting the involvement of endogenous circadian rhythm during initiation and maintenance of gonadal growth indicate that the reproductive rhythms are entrained and induced by environmental photoperiod.  相似文献   

8.
Alterations in circadian rhythms have previously been associated with estrous and seasonal changes in reproductive state. In the present study we explored the effects of the reproductive events of pregnancy and parturition on free-running circadian activity rhythms in the rat. Free-running rhythms were monitored before mating, during pregnancy, and following parturition and removal of pups. Systematic and long-lasting alterations of the period of the free-running activity rhythm were seen following parturition. The effects of estrous, seasonal, and gestational reproductive states on circadian rhythms may be mediated by the endocrine events which accompany these states.  相似文献   

9.
Northern brown bandicoots (Isoodon macrourus) were subjected to restricted feeding for 3 h in the middle of the light period of a 14: 10 light/dark cycle and immediately following this in constant dark. When feeding was restricted to the middle of the light period of the light/dark cycle, all bandicoots maintained a nocturnal activity rhythm. In addition to the nocturnal rhythm, a few bandicoots showed meal-anticipatory activity during the light period. In bandicoots that did not show meal-anticipatory activity, diurnal activity was sometimes evident either during or shortly after the daily meal time. The observation of meal-anticipatory activity in some bandicoots suggests that this species may have a mechanism separate from the light-entrainable mechanism that allows the daily anticipation of periodically available food sources. In the next stage of the experiment, which was in constant dark, the meal was presented at the same time of day as it had been in the previous stage. In all bandicoots, the previously light-entrained component of activity free-ran and was eventually affected by the restricted feeding schedule to some degree. Bandicoots showed weak entrainment and relative coordination, suggesting that restricted feeding is a weak zeitgeber in this species. Evidence also suggesting that two separate but coupled pacemakers control the activity rhythms of the bandicoot was that (a) bandicoots simultaneously showed free-running light-entrainable rhythms and meal-entrained anticipatory rhythms; (b) in several bandicoots, the light-entrainable rhythm was phase advanced when it free-ran through the meal time; and (c) in one bandicoot, meal-entrained anticipatory activity was forced away from the meal time when the previously light-entrained component of activity free-ran through it.  相似文献   

10.
Alterations in circadian rhythms have previously been associated with estrous and seasonal changes in reproductive state. In the present study we explored the effects of the reproductive events of pregnancy and parturition on free-running circadian activity rhythms in the rat. Free-running rhythms were monitored before mating, during pregnancy, and following parturition and removal of pups. Systematic and long-lasting alterations of the period of the free-running activity rhythm were seen following parturition. The effects of estrous, seasonal, and gestational reproductive states on circadian rhythms may be mediated by the endocrine events which accompany these states.  相似文献   

11.
Light is the most important synchronizer of melatonin rhythms in fish. This paper studies the influence of the characteristics of light on plasma melatonin rhythms in sole. The results revealed that under long‐term exposure to constant light conditions (LL or DD), the total 24 h melatonin production was significantly higher than under LD, but LL and DD conditions influenced the rhythms differently. Under LL, melatonin remained at around 224 pg/ml throughout the 24 h, while under DD a significant elevation (363.6 pg/ml) was observed around the subjective evening. Exposure to 1 h light pulses at MD (mid‐dark) inhibited melatonin production depending on light intensity (3.3, 5.3, 10.3, and 51.9 µW/cm2). The light threshold required to reduce nocturnal plasma melatonin to ML (mid‐light) values was 5.3 µW/cm2. Melatonin inhibition by light also depended on the wavelength of the light pulses: while a deep red light (λ>600 nm) failed to reduce plasma melatonin significantly, far violet light (λmax=368 nm) decreased indoleamine's concentration to ML values. These results suggest that dim light at night (e.g., moonlight) may be perceived and hence affect melatonin rhythms, encouraging synchronization to the lunar cycle. On the other hand, deep red light does not seem to inhibit nocturnal melatonin production, and so it may be used safely during sampling at night.  相似文献   

12.
Entrainment patterns of the circadian rhythms of body temperature and locomotor activity were compared in 6 squirrel monkeys (Saimiri sciureus) exposed to daily illumination cycles with abrupt transitions between light and darkness (LD-rectangular) or with gradual dawn and dusk transitions simulating natural twilights at the equator (LD-twilight). Daytime light intensity was 500 lux, and the total amount of light emitted per day was the same in the two conditions. Mean daytime body temperature levels were stable in LD-rectangular but increased gradually in LD-twilight, reaching peak levels during the dusk twilight. Locomotor activity showed a similar pattern, but with an additional, secondary peak near the end of dawn. Activity duration was about 0.5 h longer in LD-twilight than in LD-rectangular, but the time of activity midpoint was similar in the two conditions. Reentrainment of the body temperature rhythm was faster following an 8-h advance of the LD cycle than following an 8-h delay, but did not differ significantly between the two LD conditions. These results provide no evidence that the inclusion of twilight transitions affected the strength of the LD Zeitgeber, and suggest that the observed differences in the daily patterns reflected direct effects of light intensity on locomotor activity and body temperature rather than an effect of twilights on circadian entrainment mechanisms.Abbreviation LD light-dark  相似文献   

13.
The authors report a phase response curve (PRC) for individual honey bees (Apis mellifera) to single 1-h light pulses (1000 lux) using an Aschoff Type 1 protocol (n?=?134). The bee PRC is a weak (Type 1) PRC with a maximum advance of 1.5?h between circadian time (CT) 18 and 3 and a maximum delay of 1.5?h between CT 12 and 18. This is the first published honey bee light PRC and provides an important resource for chronobiologists and honey bee researchers. It may also have practical applications for what is an economically important species frequently transported across different time zones. (Author correspondence: )  相似文献   

14.
Four blind individuals who were thought to be entrained at an abnormal circadian phase position were reset to a more normal phase using exogenous melatonin administration. In one instance, circadian phase was shifted later. A fifth subject who was thought to be entrained was monitored over four years and eventually was shown to have a circadian period different from 24 h. These findings have implications for treating circadian phase abnormalities in the blind, for distinguishing between abnormally entrained and free‐running blind individuals, and for informing the debate over zeitgeber hierarchy in humans.  相似文献   

15.
N-Acetyltransferase (NAT) is an enzyme whose rhythmic activity in the pineal gland and retina is responsible for circadian rhythms in melatonin. The NAT activity rhythm has circadian properties such as persistence in constant conditions and precise control by light and dark. Experiments are reported in which chicks (Gallus domesticus), raised for 3 weeks in 12 h of light alternating with 12 h of dark (LD12:12), were exposed to 1-3 days of light-dark treatments during which NAT activity was measured in their pineal glands. (a) In LD12:12, NAT activity rose from less than 4.5 nmol/pineal gland/h during the light-time to 25-50 nmol/pineal gland/h in the dark-time. Constant light (LL) attenuated the amplitude of the NAT activity rhythm to 26-45% of the NAT activity cycle in LD12:12 during the first 24 h. (b) The timing of the increase in NAT activity was reset by the first full LD12:12 cycle following a 12-h phase shift of the LD12:12 cycle (a procedure that reversed the times of light and dark by imposition of either 24 h of light or dark). This result satisfies one of the criteria for NAT to be considered part of a circadian driving oscillator. (c) In less than 24-h cycles [2 h of light in alternation with 2 h of dark (LD2:2), 4 h of light in alternation with 4 h of dark (LD4:4), and 6 h of light in alternation with 6 h of dark (LD6:6)], NAT activity rose in the dark during the chicks' previously scheduled dark-time but not the previously scheduled light-time of LD12:12. In a cycle where 8 h of light alternated with 8 h of dark (LD8:8), NAT activity rose in both 8-h dark periods, even though the second one fell in the light-time of the prior LD12:12 schedule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Abstract

The leaf movement rhythm of Gossypium hirsutum L. (cv. Lakshmi) could be entrained to 24 h LD cycles with different photofractions varying from 4 to 20 h such that the night peak position of the rhythm occurred during darkness. The phase angle (ψ) of the rhythm varied in a regular manner with different photoperiods of a 24 h LD cycle. Under 24 h LD cycles with different photoperiods, the leaf movement shows probable evidences for the concurrent participation of a ‘light‐on’ and ‘light‐off rhythm.  相似文献   

17.
《Chronobiology international》2013,30(8):1011-1020
Retinal ganglion cells (RGCs) contain circadian clocks driving melatonin synthesis during the day, a subset of these cells acting as nonvisual photoreceptors sending photic information to the brain. In this work, the authors investigated the temporal and light regulation of arylalkylamine N-acetyltransferase (AA-NAT) activity, a key enzyme in melatonin synthesis. The authors first examined this activity in RGCs of wild-type chickens and compared it to that in photoreceptor cells (PRs) from animals maintained for 48?h in constant dark (DD), light (LL), or regular 12-h:12-h light-dark (LD) cycle. AA-NAT activity in RGCs displayed circadian rhythmicity, with highest levels during the subjective day in both DD and LL as well as in the light phase of the LD cycle. In contrast, AA-NAT activity in PRs exhibited the typical nocturnal peak in DD and LD, but no detectable oscillation was observed under LL, under which conditions the levels were basal at all times examined. A light pulse of 30–60?min significantly decreased AA-NAT activity in PRs during the subjective night, but had no effect on RGCs during the day or night. Intraocular injection of dopamine (50 nmol/eye) during the night to mimic the effect of light presented significant inhibition of AA-NAT activity in PRs compared to controls but had no effect on RGCs. The results clearly demonstrate that the regulation of the diurnal increase in AA-NAT activity in RGCs of chickens undergoes a different control mechanism from that observed in PRs, in which the endogenous clock, light, and dopamine exhibited differential effects. (Author correspondence: )  相似文献   

18.
Thiosulfate sulfurtransferase (TST) is an important ‘enzyme of protection,’ that accelerates the detoxification of cyanide, converting it into thiocyanate. The TST physiological rhythm was investigated at wks 2, 4, and 8 of post‐natal development (PND) in the mouse. The results revealed a statistically significant gender‐related difference, with the highest activity in females, at all the documented PND stages. In the second week of PND (pre‐weaning time), the circadian rhythm of the enzyme activity was associated with ultradian components. The prominent circadian rhythm (τ=24 h) peaked at the beginning of the light span, more precisely ~3 HALO (Hours After Light Onset). A week after weaning (wk 4 of PND), an impairment of the rhythm, with the peak shifted toward the second half of photophase, was recorded. Four to 6 wks later, about wk 8 of PND, the circadian rhythm pattern was stabilized, with its peak then located at the beginning of the dark span (13 HALO). The obtained results showed a 12 h phase‐shift of the circadian TST peak time during PND, suggesting that the rhythm stabilization is age‐dependent.  相似文献   

19.
Entrainment to light of circadian activity rhythms in tench (Tinca tinca)   总被引:1,自引:0,他引:1  
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60-liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free-running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free-running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

20.
We examined whether melatonin can act as a synchronizing agent within the circadian system of amphibians by testing the ability of melatonin injections to entrain the circadian locomotor activity rhythm of a newt (Cynops pyrrhogaster). Under constant darkness, all newts (13 cases) showing the free-running rhythms were subcutaneously injected with 10 g melatonin at the same time every other day for at least 30 days. Subsequently, they were injected with vehicle (1% ethanolic saline) instead of melatonin for at least another 30 days. In 10 of the 13 newts, the locomotor activity rhythms could be entrained to a period of 24 h by melatonin injections but not by vehicle injections. During the entrained steady-state, the active phase of an activity-rest cycle preceded the time of melatonin injections as previously reported in other diurnal species. These results suggest that the endogenous circadian rhythm of melatonin concentration may be involved in synchronizing circadian oscillator(s) within the newt's circadian system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号