首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Early it was shown that nitric oxide induced in the cerebellum neuronal net both degenerative and compensatory-adaptive changes: 1) bouton encapsulation of spines, and 2) spiral wraps formed by glial cell processes around synapses and boutons. All these morphological changes were produced with cytoskeleton involvement. In the present work we have found that a NO-generative compound enhanced the contrast of cytoskeleton elements which depended on the concentration of this compound. The best contrast was observed at 1 mM concentration. The reason of the contrast enhance may be due presumably to protein transition from a soluble to a membrane-bound state. Using the contrast enhance effect we carried out a comparative analysis of cytoskeleton elements (CE) composition. Results of the analysis showed the specificity of CE in different cell structures: bouton, spine, glial cell. The obtained data support our proposal about the leading role of cytoskeleton in compensatory-adaptive morphological changes in extremal conditions.  相似文献   

2.
Neuronal and glial cytoskeletons   总被引:1,自引:0,他引:1  
Long-awaited evidence for in vivo functions of the major neuronal microtubule associated proteins indicates that they are directly involved in neurite extension. Companion evidence reveals an intrinsic role for glial intermediate filaments in glial cell extension along neurites and for neurofilaments in establishing axonal caliber. New fluorescence and photoactivation experiments require a re-thinking of models of slow axonal transport and of the part the cytoskeleton plays in axonal guidance.  相似文献   

3.
Abstract: Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and γ , is a prominent aspect of Alzheimer's disease. MAP2 and γ are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. The phosphorylation state of these proteins modulates their affinity for tubulin and thereby affects the structure of the neuronal cytoskeleton. The dinoflagellate toxin okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. In cultured rat cortical neurons and a human neuroblastoma cell line (MSN), okadaic acid induces increased phosphorylation of MAP2 and γ concomitant with early changes in the neuronal cytoskeleton and ultimately leads to cell death. These results suggest that the diminished rate of MAP2 and γ dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.  相似文献   

4.
By means of monoclonal antibodies (fluorescein-isothiocyanate- and rhodamine-labelled) distribution and quantitative content of the main cytoskeleton proteins (actin, tubulin, neurofilamentous protein with the molecular mass of 160 kDa and glial fibrillar acid protein) has been studied in various types of the mouse embryos spinal cord cells, cultivated in monolayer. During the process of development of neurons tubulin displaces from the neuronal soma into its processes with its predominant concentration in some of them, which are probably more active functionally at certain stages of differentiation. The total amount of tubulin is supposed to remain stable during the neuron life time. Quantitative content and distribution of actin filaments in various types of the cells are different. Actin content in the neurons is much lower than in glial cells and fibroblasts. The major amount of protein (neurofilamentous, glial fibrillar acid protein) is concentrated in cell bodies and in proximal parts of the processes. The pattern of distribution of the cytoskeleton proteins in the spinal cord cells has been revealed.  相似文献   

5.
The node of Ranvier is a site for ionic conductances along myelinated nerves and governs the saltatory transmission of action potentials. Defects in the cross-bridging and spacing of the cytoskeleton are a prominent pathological feature in diseases of the peripheral nerve. Electron tomography was used to examine cytoskeletal–cytoskeletal, membrane–cytoskeletal, and heterologous cell connections in the paranodal region of the node of Ranvier in peripheral nerves. Focal attachment of cytoskeletal filaments to each other and to the axolemma and paranodal membranes of the Schwann cell via narrow cross-bridges was visualized in both neuronal and glial cytoplasm. A subset of intermediate filaments associates with the cytoplasmic surfaces of supramolecular complexes of transmembrane structures that are presumed to include known and unknown junctional proteins. Mitochondria were linked to both microtubules and neurofilaments in the axoplasm and to neighboring smooth endoplasmic reticulum by narrow cross-bridges. Tubular cisternae in the glial cytoplasm were also linked to the paranodal glial cytoplasmic loop juxtanodal membrane by short cross-bridges. In the extracellular matrix between axon and Schwann cell, junctional bridges formed long cylinders linking the two membranes. Interactions between cytoskeleton, membranes, and extracellular matrix associations in the paranodal region are likely critical not only for scaffolding, but also for intracellular and extracellular communication.  相似文献   

6.
In a basic approach to investigations of neuronal–glial interactions during both normal brain development and its pathogenesis, embryonic brain cell populations were fractionated into purified neuronal and glial components. Using separation procedures based on differential adhesion and cytotoxicity, the isolated neuronal and glial phenotypes could be identified by distinct morphological and biochemical characteristics, including the visualization of glial fibrillary acid protein (GFA) within glial cells in immunohistochemical assays with monospecific anti-GFA serum. When unfractionated cerebrum cells dissociated from 10-day chick or 14-day mouse embryos were plated as monolayers and cultured for 1-14 days, monospecific antiserum against fibronectin (LETS glycoprotein) was found to react with many, but not all, of the cells as revealed by indirect immunofluorescence microscopy. The isolated neuronal and glial components of these populations were used to determine whether the appearance of membrane-associated fibronectin was characteristic of one cell type or the other, or both, and if neuronal–glial cell interaction was required for its expression. It was found that the surfaces of glial cells, completely isolated from neurons, showed an intense fluorescent reaction to the anti-fibronectin serum. In contrast, the purified neuronal cultures showed no fluorescence with either the anti-GFA or anti-fibronectin sera. These results demonstrate fibronectin as a cell surface protein associated primarily with glial cells and independent of neuronal–glial cell interaction for its expression. Furthermore, the results indicate that the fibronectin observed on glial cell surfaces in these cultures is produced endogenously and is not due to the preferential binding of fibronectin present in the culture medium. The role of fibronectin as an adhesive molecule in neuronal–glial interactions is discussed.  相似文献   

7.
In the present work, we focused on mechanisms of methylmercury (MeHg) toxicity in primary astrocytes and neurons of rats. Cortical astrocytes and neurons exposed to 0.5–5 μM MeHg present a link among morphological alterations, glutathione (GSH) depletion, glutamate dyshomeostasis, and cell death. Disrupted neuronal cytoskeleton was assessed by decreased neurite length and neurite/neuron ratio. Astrocytes presented reorganization of actin and glial fibrillary acidic protein (GFAP) networks and reduced cytoplasmic area. Glutamate uptake and Na+K+ATPase activity in MeHg-treated astrocytes were preserved; however, downregulated EAAC1-mediated glutamate uptake was associated with impaired Na+K+ATPase activity in neurons. Oxidative imbalance was found in astrocytes and neurons through increased 2′7′-dichlorofluorescein (DCF) production and misregulated superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GPX) activities. Glutathione (GSH) levels were downregulated in both astrocytes and neurons. MeHg reduced neuronal viability and induced caspase 3-dependent apoptosis together with downregulated PI3K/Akt pathway. In astrocytes, necrotic death was associated with increased TNF-α and JNK/MAPK activities. Cytoskeletal remodeling and cell death were fully prevented in astrocytes and neurons by GSH, but not melatonin or Trolox supplementation. These findings support a role for depleted GSH in the cytotoxicity of MeHg leading to disruption of the cytoskeleton and cell death. Moreover, in neurons, glutamate antagonists also prevented cytoskeletal disruption and neuronal death. We propose that cytoskeleton is an end point in MeHg cytotoxicity. Oxidative imbalance and glutamate mechanisms mediate MeHg cytoskeletal disruption and apoptosis in neurons. Otherwise, redox imbalance and glutamate-independent mechanisms disrupted the cytoskeleton and induced necrosis in MeHg-exposed astrocyte.  相似文献   

8.
—Bulk prepared neuronal perikarya, nerve endings and glial cells have been used to study amino acid concentrations and GABA metabolism in vitro. All amino acids were more concentrated in synaptosomes and glial cells than in neuronal perikarya. Cell specificity was found with respect to the relative distribution of some amino acids. Glutamate decarboxylase activity was considerably higher in synaptosomes than in glial cells. The inhibitory effect of amino-oxyacetic acid on glutamate decarboxylase activity differed between synaptosomes and glial cells. γ-Aminobutyric acid-α-ketoglutarate transaminase had the highest activity in the glial cell fraction; the inhibition of amino-oxyacetic acid differed between glial and neuronal material. The metabolism of exogenous GABA just accumulated by a cell showed similar time characteristics in neuronal and glial material.  相似文献   

9.
Glial elements in the central nervous system of Eisenia fetida were studied at light- and electron microscopic level. Cells were characterized with the aid of toluidine blue, Glial Fibrillary Acidic Protein (GFAP), S100 staining. We identified neurilemmal-, subneurilemmal-, supporting-nutrifying- and myelinsheath forming glial cells. Both neuronal and non-neuronal elements are S100-immunoreactive in the CNS. Among glial cells neurilemmal and subneurilemmal cells are S100-immunopositive. With the antibody against the S100 protein one band is visible at 15 kDa. GFA P-immunopositive supporting-nutrifying glial cells are localized around neurons and they often appear as cells with many vacuoles. GFA P-positive cell bodies of elongated neurilemmal glial cells are also visible. Western blot analysis shows a single 57 kDa GFA P immunoreactive band in the Eisenia sample. At ultrastructural level contacts between neuronal and glial cells are recognizable. Glial cell bodies and their filopodia contain a granular and vesicular system. Close contacts between neuronal cell membranes and glial filopodia create a special environment for material transport. Vesicles budding off glial cell granules move towards the cell membranes, probably emptying their content with kiss and run exocytosis. The secreted compounds in return may help neuronal survival, provide nutrition, and filopodia may also support neuronal terminals.  相似文献   

10.
The majority of neurons in the adult neocortex are produced embryonically during a brief but intense period of neuronal proliferation. The radial glial cell, a transient embryonic cell type known for its crucial role in neuronal migration, has recently been shown to function as a neuronal progenitor cell and appears to produce most cortical pyramidal neurons. Radial glial cell modulation could thus affect neuron production, neuronal migration, and overall cortical architecture; however, signaling mechanisms among radial glia have not been studied directly. We demonstrate here that calcium waves propagate through radial glial cells in the proliferative cortical ventricular zone (VZ). Radial glial calcium waves occur spontaneously and require connexin hemichannels, P2Y1 ATP receptors, and intracellular IP3-mediated calcium release. Furthermore, we show that wave disruption decreases VZ proliferation during the peak of embryonic neurogenesis. Taken together, these results demonstrate a radial glial signaling mechanism that may regulate cortical neuronal production.  相似文献   

11.
Chloroquine Reduces Neuronal and Glial Iron Uptake   总被引:4,自引:1,他引:3  
The effect of chloroquine, a lysosomotropic agent, on iron uptake into neuronal and glial cell cultures is reported. Chloroquine significantly inhibited iron uptake in both neuronal and glial cells. These findings suggest that iron transport into both neuronal and glial cells is mediated by the transferrin-iron complex.  相似文献   

12.
Localization of 4.1 related proteins in cerebellar neurons   总被引:1,自引:0,他引:1  
Localization of 4.1 related proteins in neurons was studied with immunofluorescence microscopy and with immunoelectron microscopy on ultrathin cryosections. In rat cerebellum, 4.1 immunoreactive proteins were demonstrated in Purkinje cell bodies, dendrites and other neurons in the cerebellar cortex. Some glial cells showed staining, but no labeling was found in myelinated axons of the white matter and of the glomeruli in the granule cell layer. At the ultrastructural level, the 4.1 related proteins were localized mainly in the cytoplasmic matrix, while some labeling was found underneath the plasma membrane. To determine whether 4.1 related proteins in neuronal cytoplasm exist as part of the cytoskeleton or not, PC12 cells cultured in the presence of nerve growth factor were stained with the anti-4.1 antibody. Since cytoplasmic staining was retained after detergent treatment, the 4.1 related proteins seem to exist as a component of the neural cell cytoskeleton. Localization of 4.1 related proteins during the postnatal development of the cerebellum was also studied. In Purkinje cells, localization of 4.1 related proteins changed according to the stages of the postnatal development. The present data suggest that 4.1 related proteins in neurons localized mainly in the cytoplasm and may play some role in organizing cytoskeletal networks in the cytomatrix. Their distribution is developmentally regulated in some neurons, possibly in relationship to their maturation in the cytoskeleton.  相似文献   

13.
Serum-free aggregating cell cultures of fetal rat telencephalon were examined by biochemical and immunocytochemical methods for their development-dependent expression of several cytoskeletal proteins, including the heavy- and medium-sized neurofilament subunits (H-NF and M-NF, respectively); brain spectrin; synapsin I; beta-tubulin; and the microtubule-associated proteins (MAPs) 1, 2, and 5 and tau protein. It was found that with time in culture the levels of most of these cytoskeletal proteins increased greatly, with the exceptions of the particular beta-tubulin form studied, which remained unchanged, and MAP 5, which greatly decreased. Among the neurofilament proteins, expression of M-NF preceded that of H-NF, with the latter being detectable only after approximately 3 weeks in culture. Furthermore, MAP 2 and tau protein showed a development-dependent change in expression from the juvenile toward the adult form. The comparison of these developmental changes in cytoskeletal protein levels with those observed in rat brain tissue revealed that protein expression in aggregate cultures is nearly identical to that in vivo during maturation of the neuronal cytoskeleton. Aggregate cultures deprived of glial cells, i.e., neuron-enriched cultures prepared by treating early cultures with the antimitotic drug cytosine arabinoside, exhibited pronounced deficits in M-NF, H-NF, MAP 2, MAP 1, synapsin I, and brain spectrin, with increased levels of a 145-kDa brain spectrin breakdown product. These adverse effects of glial cell deprivation could be reversed by the maintenance of neuron-enriched cultures at elevated concentrations of KCl (30 mM). This chronic treatment had to be started at an early developmental stage to be effective, a finding suggesting that sustained depolarization by KCl is able to enhance the developmental expression and maturation of the neuronal cytoskeleton.  相似文献   

14.
Abstract— Fractions enriched in neuronal cell bodies and in glial cells were isolated from rabbit cerebral cortex by discontinuous gradient centrifugation. The ratio of total lipid to protein was approx. 50 per cent higher in the glial fraction than in the neuronal fraction. The fatty acid composition for the major phosphoglycerides was with few exceptions, similar for neurons and glia. The ganglioside concentration was very low for both cell types, but was approx. twice as high in the glial cells as in the neurons. The pattern of individual gangliosides was, however, very similar for the glial and neuronal fractions and did not differ from that of unfractionated cerebral cortex, synaptosomes and mitochondria. The latter results are discussed in relation to the estimated amounts of plasma membrane in the neuronal and glial fractions.  相似文献   

15.
S100B is an astrocyte calcium-binding protein that plays a regulatory role in the cytoskeleton and cell cycle. Moreover, extracellular S100B, a marker of glial activation in several conditions of brain injury, has a trophic or apoptotic effect on neurons, depending on its concentration. Hyperglycemic rats show changes in glial parameters, including S100B expression. Here, we investigated cell density, morphological and biochemical alterations in primary cortical astrocytes from rats and C6 glioma cells cultured in high-glucose medium. Astrocytes and C6 glioma cells have a reduced content of S100B and glial fibrillary acidic protein when cultured in a high-glucose environment, as well as a reduced content of glutathione and cell proliferation rate. Although these cells have been used indistinctly to study S100B secretion, we observed a contrasting profile of S100B secretion in a high-glucose medium: a decrease in primary astrocytes and an increase in C6 glioma cells. Based on the in vitro neurotrophic effects of the S100B protein, our data suggest that chronic elevated glucose levels affect astrocyte activity, reducing extracellular secretion of S100B and that this, in turn, could affect neuronal activity and survival. Such astrocyte alterations could contribute to cognitive deficit and other impairments observed in diabetic patients.  相似文献   

16.
《Fly》2013,7(1):71-79
A complex nervous system comprises two distinct cell types, neurons and glial cells, whose development, differentiation and function is mutually interdependent. Many studies contributed to uncovering the basic mechanisms determining neuronal and glial fate and we are progressing enormously towards an understanding of how neurons interconnect to form intricate neuronal networks. However, the mechanisms used to couple neuronal and glial development remain largely obscure. Here we advocate the usefulness of the developing Drosophila compound eye as a new model to study the complex relationship between glial and neuronal cells.  相似文献   

17.
Peripheral glial cells in both vertebrates and insects are born centrally and travel large distances to ensheathe axons in the periphery. There is very little known about how this migration is carried out. In other cells, it is known that rearrangement of the Actin cytoskeleton is an integral part of cell motility, yet the distribution of Actin in peripheral glial cell migration in vivo has not been previously characterized. To gain an understanding of how glia migrate, we specifically labeled the peripheral glia of Drosophila melanogaster using an Actin-GFP marker and analyzed their development in the embryonic PNS. It was found that Actin cytoskeleton is dynamically rearranged during glial cell migration. The peripheral glia were observed to migrate as a continuous chain of cells, with the leading glial cells appearing to participate to the greatest extent in exploring the extracellular surroundings with filopodia-like Actin containing projections. We hypothesized that the small GTPases Rho, Rac and Cdc42 are involved in Actin cytoskeletal rearrangements that underlie peripheral glial migration and nerve ensheathement. To test this, transgenic forms of the GTPases were ectopically expressed specifically in the peripheral glia during their migration and wrapping phases. The effects on glial Actin-GFP distribution and the overall effects on glial cell migration and morphological development were assessed. We found that RhoA and Rac1 have distinct roles in peripheral glial cell migration and nerve ensheathement; however, Cdc42 does not have a significant role in peripheral glial development. RhoA and Rac1 gain-of-function and loss-of-function mutants had both disruption of glial cell development and secondary effects on sensory axon fasciculation. Together, Actin cytoskeletal dynamics is an integral part of peripheral glial migration and nerve ensheathement, and is mediated by RhoA and Rac1.  相似文献   

18.
Changes in neuronal morphology underlying neuronal differentiation depend on rapid and sustained cytoskeleton rearrangements in the growing neurites. Whereas cell adhesion molecules are well established as regulators of neuronal differentiation, less is known about the signaling mechanisms by which they influence the cytoskeleton. Here we show that the neural cell adhesion molecule (NCAM) associates with the active form of caspase-8 and that clustering of NCAM at the neuronal cell surface leads to activation of caspase-8 and -3 followed by the cleavage of the sub-membranous brain spectrin meshwork, but not of the actin or tubulin cytoskeleton. Inhibitors of caspase-8 and -3 specifically block the NCAM-dependent spectrin cleavage and abolish NCAM-dependent neurite outgrowth. NCAM-dependent rearrangements of the membrane associated spectrin meshwork via caspase-8 dependent caspase-3 activation are thus indispensable for NCAM-mediated neurite outgrowth.  相似文献   

19.
By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal antibodies; an antibody was obtained that interacted with neurons, inhibited binding of neuronal membrane vesicles to glial cells, and recognized an Mr = 135,000 band in immunoblots of embryonic chick brain membranes. These results suggest that this molecule is present on the surfaces of neurons and that it directly or indirectly mediates adhesion between neurons and glial cells. Because the monoclonal antibody as well as the original polyspecific antibodies that were active in the assay did not bind to glial cells, we infer that neuron- glial interaction is heterophilic, i.e., it occurs between Ng-CAM on neurons and an as yet unidentified CAM present on glial cells.  相似文献   

20.
The nuclear poly(ADP-ribose)polymerase activity of neuronal and glial cells during postnatal development of rats was studied. It was shown that the poly(ADP-ribose)polymerase activity of nuclei and nuclear matrix of neuronal cells during postnatal development of rats is increased, whereas the polymerase activity of glial cell nuclei and nuclear matrix in newborn and adult rats is higher than in 14-day-old animals. The DNA-topoisomerase II activity of neuronal nuclear matrix during the postnatal development of rats does not change, whereas the topoisomerase activity of glial nuclear matrix decreases but is always higher than the DNA-topoisomerase II activity of neuronal cell matrix during the postnatal development of rats. It is suggested that ADP-ribosylation in the nuclear matrix of neuronal cells causes the inhibition of the DNA-topoisomerase II activity of nuclear matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号