首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Wild-type yeast mitochondrial DNA (mtDNA) is inherited biparentally, whereas mtDNA of hypersuppressive petite mutants is inherited uniparentally in crosses to strains with wild-type mtDNA. Genomes of hypersuppressive petites contain a conserved ori sequence that includes a promoter, but it is unclear whether the ori confers a segregation or replication advantage. Fluorescent in situ hybridization analysis of wild-type and petite mtDNAs in crosses reveals no preferential segregation of hypersuppressive petite mtDNA to first zygotic buds. We identify single-stranded DNA circles and RNA-primed DNA replication intermediates in hypersuppressive petite mtDNA that are absent from non-hypersuppressive petites. Mutating the promoter blocks hypersuppressiveness in crosses to wild-type strains and eliminates the distinctive replication intermediates. We propose that promoter-dependent RNA-primed replication accounts for the uniparental inheritance of hypersuppressive petite mtDNA.  相似文献   

4.
Highly diverse results have been reported for mitochondrial DNA (mtDNA) hetero-plasmy in nuclear-transferred farm animals. In this study, we cloned genetically defined mice and investigated donor mtDNA inheritance following somatic cell cloning. Polymerase chain reaction (PCR) analysis with primers that were specific for either the recipient oocytes or donor cells revealed that the donor mtDNA coexisted with the recipient mtDNA in the brain, liver, kidney, and tail tissues of 96% (24/25) of the adult clones. When the proportion of donor mtDNA in each tissue was measured by allele-specific quantitative PCR and subjected to ANOVA analysis, a tissue-specific mtDNA segregation pattern (P < 0.05) was observed, with the liver containing the highest proportion of donor mtDNA. Therefore, the donor mtDNA was inherited consistently by the cloned offspring, whereas donor mtDNA segregation was not neutral, which is in accordance with previous notions about tissue-specific nuclear control of mtDNA segregation.  相似文献   

5.
6.
Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud.  相似文献   

7.
8.
To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle.  相似文献   

9.
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.  相似文献   

10.
The structure and integrity of the mitochondrial compartment are features essential for it to function efficiently. The maintenance of mitochondrial structure in cells ranging from yeast to humans has been shown to require both ongoing fission and fusion. Recent characterization of many of the molecular components that direct mitochondrial fission and fusion events have led to a more complete understanding of how these processes take place. Further, mitochondrial fragmentation observed when cells undergo apoptosis requires mitochondrial fission, underlying the importance of mitochondrial dynamics in cellular homeostasis. Mitochondrial structure also impacts mitochondrial DNA inheritance. Recent studies suggest that faithful transmission of mitochondrial DNA to daughter cells might require a mitochondrial membrane tethering apparatus.  相似文献   

11.
We have isolated the total cellular DNA from the cultured diploid fibroblasts of a six-member, three-generation human family. Using a specific radioactive probe for mitochondrial (mt) sequences we have identified new polymorphic variants in this family for the Hhal restriction endonuclease cleavage pattern of the mtDNA. The inheritance of these cleavage patterns verifies the maternal inheritance of mtDNA through all three generations.  相似文献   

12.
Mutations of mitochondrial DNA (mtDNA) cause a wide array of multisystem disorders, particularly affecting organs with high energy demands. Typically only a proportion of the total mtDNA content is mutated (heteroplasmy), and high percentage levels of mutant mtDNA are associated with a more severe clinical phenotype. MtDNA is inherited maternally and the heteroplasmy level in each one of the offspring is often very different to that found in the mother. The mitochondrial genetic bottleneck hypothesis was first proposed as the explanation for these observations over 20 years ago. Although the precise bottleneck mechanism is still hotly debated, the regulation of cellular mtDNA content is a key issue. Here we review current understanding of the factors regulating the amount of mtDNA within cells and discuss the relevance of these findings to our understanding of the inheritance of mtDNA heteroplasmy.  相似文献   

13.
Summary The segregation of a heteroplasmic silent polymorphism in the mitochondrial ND6 gene has been followed in a human maternal lineage comprising eight individuals and spanning three generations. Heteroplasmy persisted in all eight maternally related family members. More importantly, the frequencies of the two alleles showed relatively little variation among individuals or between generations. In contrast to the findings in other mammalian lineages, the present results indicate relatively slow mitochondrial gene segregation. A narrow bottleneck in the number of mitochondrial DNA (mtDNA) molecules, which occurs at some stage of oogenesis, has been advanced to explain rapid mammalian mitochondrial gene segregation. It is suggested here that the segregation of mitochondrial genes may be more complex than initially envisaged, and that models need to be developed that account for both rapid and slow segregation. One possibility, which reconciles both physical and genetic studies of mammalian mtDNA, is that the unit of mitochondrial segregation is the organelle itself, each containing multiple mtDNA molecules.  相似文献   

14.
In most species mitochondrial DNA (mtDNA) is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy) but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype) to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry) in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e)) of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of mitochondrial disorders and population interpretations using mtDNA data.  相似文献   

15.
Many land plants deviate from the maternal pattern of organelle inheritance. In this study, heterologous mitochondrial and chloroplast probes were used to investigate the inheritance of organelle genomes in the progeny of an intergeneric cross. The seed parent was LB 1-18 (a hybrid of Citrus reticulata Blanco cv. Clementine x C. paradisi Macf. cv. Duncan) and the pollen parent was the cross-compatible species Poncirus trifoliata (L.) Raf. All 26 progeny examined exhibited maternal inheritance of plastid petA and petD loci. However, 17 of the 26 progeny exhibited an apparent biparental inheritance of mitochondrial atpA, cob, coxII, and coxIII restriction fragment length polymorphisms (RFLPs) and maternal inheritance of mitochondrial rrn26 and coxI RFLPs. The remaining nine progeny inherited only maternal mitochondrial DNA (mtDNA) configurations. Investigations of plant mitochondrial genome inheritance are complicated by the multipartite structure of this genome, nuclear gene control over mitochondrial genome organization, and transfer of mitochondrial sequences to the nucleus. In this study, paternal mtDNA configurations were not detected in purified mtDNA of progeny plants, but were present in progeny DNA preparations enriched for nuclear genome sequences. MtDNA sequences in the nuclear genome therefore produced an inheritance pattern that mimics biparental inheritance of mtDNA.  相似文献   

16.
S. B. Lee  J. W. Taylor 《Genetics》1993,134(4):1063-1075
This study tested mechanisms proposed for maternal uniparental mitochondrial inheritance in Neurospora: (1) exclusion of conidial mitochondria by the specialized female reproductive structure, trichogyne, due to mating locus heterokaryon incompatibility and (2) mitochondrial input bias favoring the larger trichogyne over the smaller conidium. These mechanisms were tested by determining the modes of mitochondrial DNA (mtDNA) inheritance and transmission in the absence of mating locus heterokaryon incompatibility following crosses of uninucleate strains of Neurospora tetrasperma with trichogyne (trichogyne inoculated by conidia) and without trichogyne (hyphal fusion). Maternal uniparental mitochondrial inheritance was observed in 136 single ascospore progeny following both mating with and without trichogyne using mtDNA restriction fragment length polymorphisms to distinguish parental types. This suggests that maternal mitochondrial inheritance following hyphal fusions is due to some mechanism other than those that implicate the trichogyne. Following hyphal fusion, mututally exclusive nuclear migration permitted investigation of reciprocal interactions. Regardless of which strain accepted nuclei following seven replicate hyphal fusion matings, acceptor mtDNA was the only type detected in 34 hyphal plug and tip samples taken from the contact and acceptor zones. No intracellular mtDNA mixtures were detected. Surprisingly, 3 days following hyphal fusion, acceptor mtDNA replaced donor mtDNA throughout the entire colony. To our knowledge, this is the first report of complete mitochondrial replacement during mating in a filamentous fungus.  相似文献   

17.
Accumulation of mitochondrial DNA (mtDNA) mutations has been implicated in a wide range of human pathologies, including neurodegenerative diseases, sarcopenia, and the aging process itself. In cells, mtDNA molecules are constantly turned over (i.e. replicated and degraded) and are also exchanged among mitochondria during the fusion and fission of these organelles. While the expansion of a mutant mtDNA population is believed to occur by random segregation of these molecules during turnover, the role of mitochondrial fusion-fission in this context is currently not well understood. In this study, an in silico modeling approach is taken to investigate the effects of mitochondrial fusion and fission dynamics on mutant mtDNA accumulation. Here we report model simulations suggesting that when mitochondrial fusion-fission rate is low, the slow mtDNA mixing can lead to an uneven distribution of mutant mtDNA among mitochondria in between two mitochondrial autophagic events leading to more stochasticity in the outcomes from a single random autophagic event. Consequently, slower mitochondrial fusion-fission results in higher variability in the mtDNA mutation burden among cells in a tissue over time, and mtDNA mutations have a higher propensity to clonally expand due to the increased stochasticity. When these mutations affect cellular energetics, nuclear retrograde signalling can upregulate mtDNA replication, which is expected to slow clonal expansion of these mutant mtDNA. However, our simulations suggest that the protective ability of retrograde signalling depends on the efficiency of fusion-fission process. Our results thus shed light on the interplay between mitochondrial fusion-fission and mtDNA turnover and may explain the mechanism underlying the experimentally observed increase in the accumulation of mtDNA mutations when either mitochondrial fusion or fission is inhibited.  相似文献   

18.
19.
Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases.  相似文献   

20.
A genetic and cell-biological analysis is provided for Saccharomyces cerevisiae DML1 (YMR211w) encoding a Drosophila melanogaster Misato-like protein. Misato and Dml1p are descendants of an ancestral tubulin-like protein, and exhibit regions with similarity to members of a GTPase family that include eukaryotic tubulin and prokaryotic FtsZ. Deletion of DML1 was lethal to haploid cells; sporulated DML1/dml1Delta heterozygotes from different genetic backgrounds gave rise to no more than two viable spores per tetrad. DAPI staining for DNA in combination with Southern analysis using the mitochondrial genes COX3, 15S_rRNA_2, and COB revealed that a significant portion of the surviving meiotic progeny were [rho(0)] lacking mtDNA. In addition, meiotic transmission of centromeric plasmids also appeared to be impaired. Self-complementation using extra-chromosomal copies of DML1 efficiently restored meiotic inheritance of mtDNA, but improved spore viability ratios only in part. Inheritance of mtDNA could also be restored using misato cDNA. Unscheduled expression of DML1 tethered to the inducible ADH2 promoter altered both mitochondrial dispersion and general cell morphology. We propose that Dml1p and Misato have been co-opted into a role in mtDNA inheritance in yeast, and into a cell division-related mechanism in flies, respectively. Dml1p might additionally function in the partitioning of the mitochondrial organelle itself, or in the segregation of chromosomes, thereby explaining its essential requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号