首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Darwin did not approach the Galápagos with the same enthusiasm and energy as he showed at earlier places visited by the Beagle. Notwithstanding, he looked back on the five weeks the Beagle spent in the Galápagos as a time when he made observations important for the development of his evolutionary ideas. In retrospect, he was astonished at what he saw there.  相似文献   

5.
6.
7.
Darwin was a teleologist   总被引:3,自引:0,他引:3  
It is often claimed that one of Darwin's chief accomplishments was to provide biology with a non-teleological explanation of adaptation. A number of Darwin's closest associates, however, and Darwin himself, did not see it that way. In order to assess whether Darwin's version of evolutionary theory does or does not employ teleological explanation, two of his botanical studies are examined. The result of this examination is that Darwin sees selection explanations of adaptations as teleological explanations. The confusion in the nineteenth century about Darwin's attitude to teleology is argued to be a result of Darwin's teleological explanations not conforming to either of the dominant philosophical justifications of teleology at that time. Darwin's explanatory practices conform well, however, to recent defenses of the teleological character of selection explanations.I would like to thank John Beatty, David Hull and one of this journal's readers for constructive comments on an earlier draft of this paper.  相似文献   

8.
9.
10.
The objective of this paper is to present a systems view of the major features of biological evolution based upon changes in internal chemistry and uses of cellular space, both of which it will be stated were dependent on the changing chemical environment. The account concerns the major developments from prokaryotes to eukaryotes, to multi-cellular organisms, to animals with nervous systems and a brain, and finally to human beings and their uses of chemical elements in space outside themselves. It will be stated that the changes were in an inevitable progression, and were not just due to blind chance, so that "random searching" by a coded system to give species had a fixed overall route. The chemical sequence is from a reducing to an ever-increasingly oxidizing environment, while organisms retained reduced chemicals. The process was furthered recently by human beings who have also increased the range of reduced products trapped on Earth in novel forms. All the developments are brought about from the nature of the chemicals which organisms accumulate using the environment and its changes. The relationship to the manner in which particular species (gene sequences) were coincidentally changed, the molecular view of evolution, is left for additional examination.There is a further issue in that the changes of the chemistry of the environment developed largely at equilibrium due to the relatively fast reactions there of the available inorganic chemicals. Inside cells, some of these same chemicals also came to equilibrium within compounds. All such equilibria reduced the variance (degrees of freedom) of the total environmental/biological system and its possible development. However, the more sophisticated organic chemistry, almost totally inside cells until humans evolved, is kinetically controlled and limited by the demands of cellular reduction necessary to produce essential chemicals and by the availability of certain elements and energy. Hence the variability of reductive cellular organic chemistry and its limitations in cells have to be considered separately. While as a whole they drive the oxidation of the environment, they also allow speciation within the major changes of organisms. Human beings have introduced recently new, virtually irreversible, inorganic and organic chemistry in the environment, much of it new modes of irreversible storage of reduced chemicals, and this is, we state, the last possible step of chemical evolution. We must attempt to evaluate its effect on organisms generally.It must be clear that all the changes and the original life forms are dependent upon energy as well as material capture and flow. We shall have to consider in which forms energy was available over the period of evolution, how it was usefully transformed, and the ways in which its sources changed.  相似文献   

11.
12.
Oh,oh was?     
  相似文献   

13.
14.
15.
16.
The size (mass) of Archaeopteryx , primarily the Berlin specimen, has been estimated in two ways. A new three-dimensional reconstruction suggests a mass of no more than 271 g. Application of allometric equations derived from both birds and mammals to various linear dimensions yields a range of estimates from 112 to 2269 g, but all the more plausible estimates lie in the range 220–330 g.  相似文献   

17.
18.
《Trends in microbiology》2023,31(4):326-328
Despite solid, growing genomic evidence for bacteria practicing bacteriochlorophyll and rhodopsin-based dual phototrophy, direct physiological proof has been lacking for over a decade until Kopejtka et al. recently solved the puzzle in an Alpine psychrophilic bacterium. Here, I highlight conceptual developments and address an overlooked, ecologically important phototrophic byproduct – heat.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号