首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein N-arginine methyltransferase (PRMT)1 catalyzes arginine methylation in a variety of substrates, although the potential role of PRMT1 in insulin action has not been defined. We therefore investigated the effect of PRMT1-mediated methylation on insulin signaling and glucose uptake in skeletal L6 myotubes. Exposure of L6 myotubes to insulin rapidly induced translocation of PRMT1 and increased its catalytic activity in membrane fraction. Several proteins in the membrane fraction were arginine-methylated after insulin treatment, which were inhibited by pretreatment with an inhibitor of methyltransferase, 5′-deoxy-5′-(methylthio)adenosine (MTA), or a small interfering RNA against PRMT1 (PRMT1-siRNA). Inhibition of arginine methylation with MTA or PRMT1-siRNA diminished later phase of insulin-stimulated tyrosine phosphorylation of insulin receptor (IR) β and IRS-1, association of IRS-1 with p85α subunit of PI3-K, and glucose uptake. Our results suggest that PRMT1-mediated methylation serves as a positive modulator of IR/IRS-1/PI3-K pathway and subsequent glucose uptake in skeletal muscle cells.  相似文献   

2.
PKCtheta is a key player in the development of insulin resistance   总被引:1,自引:0,他引:1  
Activation of PKCtheta is associated with lipid-induced insulin resistance and PKCtheta knockout mice are protected from the lipid-induced defects. However, the exact mechanism by which PKCtheta contributes to insulin resistance is not known. To investigate whether an increase in PKCtheta expression leads to insulin resistance, C2C12 skeletal muscle cells were transfected with PKCtheta DNA and treated with different concentrations of insulin for 10 min. PKCtheta overexpression induced reduction of IRS-1 protein levels with a decrease in insulin-induced p85 binding to IRS-1, phosphorylation of PKB and its substrates, p70 and GSK3. Pretreatment of these cells with GF-109203X (a non-specific PKC inhibitor, IC50 for PKCtheta = 10 nM) recovered insulin signaling. PKCtheta was found to be expressed in liver and treatment of human hepatoma cells (HepG2) with high insulin and glucose resulted in an increase in PKCtheta expression that correlated with a decrease in IRS-1 protein levels and the development of insulin resistance. Reduction of PKCtheta expression using RNAi technology significantly inhibited the degradation of IRS-1 and enhanced insulin-induced IRS-1 tyrosine phosphorylation, p85 association to IRS-1 and PKB phosphorylation. In conclusion, by overexpressing PKCtheta or using RNAi technology to downregulate PKCtheta, we have demonstrated that PKCtheta has a key role in the development of insulin resistance. These findings suggest that PKCtheta mediates not only insulin resistance in muscle but also in liver, which may contribute to the development of whole body insulin resistance and diabetes.  相似文献   

3.
4.
Insulin rapidly stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of insulin receptor substrates (IRS), which in turn associates and activates PI 3-kinase, leading to an increase in glucose uptake. Phosphorylation of IRS proteins and activation of downstream kinases by insulin are transient and the mechanisms for the subsequent downregulation of their activity are largely unknown. We report here that the insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase association to IRS-1 were strongly sustained by the proteasome inhibitors, MG132 and lactacystin. In contrast, no effect was detected on the insulin receptor and IRS-2 tyrosine phosphorylation. Interestingly, lactacystin also preserved PKB activation and insulin-induced glucose uptake. In contrast, calpeptin, a calpain inhibitor, was ineffective. Tyrosine phosphatase assays were also performed, showing that lactacystin was not functioning directly as a tyrosine phosphatase inhibitor "in vitro." In conclusion, proteasome inhibitors can regulate the tyrosine phosphorylation of IRS-1 and the downstream insulin signaling pathway, leading to glucose transport.  相似文献   

5.
The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCdelta on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCdelta-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCdelta catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.  相似文献   

6.
The exon 16-encoded juxtamembrane (JM) domain of human insulin receptor (hIR) harbors the NPEY motif which couples the insulin-activated hIR kinase to downstream signal transduction molecules. We sought to determine if signal transduction requires the entire exon 16-encoded 22-amino acid JM domain. Transfected CHO cells were generated stably expressing either the wild-type hIR (hIR-WT) or two mutant hIRs (hIRDeltaEx16 in which the JM domain was deleted, and hIRrosJM in which the deleted segment was replaced by the corresponding domain of v-ros protein). The mutant hIRDeltaEx16 and hIRrosJM exhibited similar insulin-binding as the hIRWT. Insulin internalization and insulin dose-response experiments toward activation of downstream signal transduction molecules demonstrated that: i) the presence of intact hIR-JM domain which harbors the NPEY motif is essential for Shc phosphorylation but not for IRS-1 phosphorylation; ii) insulin signal transduction can occur independent of the JM domain of hIR and without participation of the NPEY motif; iii) engagement of this putative alternative downstream signal transduction is Shc independent and is dependent on insulin concentration; and iv) insulin internalization does not necessarily require the hIR specific aa sequence of the JM domain which can be partially substituted by the JM domain of the v-ros tyrosine kinase.  相似文献   

7.
An ethanolic extract of Artemisia dracunculus L. (PMI 5011) has been observed to decrease glucose and insulin levels in animal models, but the cellular mechanisms by which insulin action is enhanced in vivo are not precisely known. In this study, we evaluated the effects of PMI 5011 to modulate gene expression and cellular signaling through the insulin receptor in skeletal muscle of KK-Ay mice. Eighteen male KK-Ay mice were randomized to a diet (w/w) mixed with PMI 5011 (1%) or diet alone for 8 weeks. Food intake, adiposity, glucose and insulin were assessed over the study, and at study completion, vastus lateralis muscle was obtained to assess insulin signaling parameters and gene expression. Animals randomized to PMI 5011 were shown to have enhanced insulin sensitivity and increased insulin receptor signaling, i.e., IRS-associated PI-3 kinase activity, Akt-1 activity and Akt phosphorylation, in skeletal muscle when compared to control animals (P<.01, P<.01 and P<.001, respectively). Gene expression for insulin signaling proteins, i.e., IRS-1, PI-3 kinase and Glut-4, was not increased, although a relative increase in protein abundance was noted with PMI 5011 treatment. Gene expression for specific ubiquitin proteins and specific 20S proteasome activity, in addition to skeletal muscle phosphatase activity, i.e., PTP1B activity, was significantly decreased in mice randomized to PMI 5011 relative to control. Thus, the data demonstrate that PMI 5011 increases insulin sensitivity and enhances insulin receptor signaling in an animal model of insulin resistance. PMI 5011 may modulate skeletal muscle protein degradation and phosphatase activity as a possible mode of action.  相似文献   

8.
Protein-tyrosine phosphatase-1B (PTP1B) has been implicated as a negative regulator of insulin signaling. PTP1B dephosphorylates the insulin receptor and insulin receptor substrates (IRS-1/2), inhibiting the insulin-signaling pathway. PTP1B has been reported to be elevated in diabetes and insulin-resistant states. Conversely, PTP1B null mice have increased insulin sensitivity. To further investigate the effect of PTP1B reduction on insulin signaling, FAO rat hepatoma cells were transfected, by electroporation, with a specific PTP1B antisense oligonucleotide (ASO), or a control oligonucleotide. The PTP1B ASO caused a 50-70% reduction in PTP1B protein expression as measured by Western blot analysis. Upon insulin stimulation, an increase in the phosphorylation of the insulin receptor and insulin receptor substrates was observed, without any change in protein expression levels. Reduction of PTP1B expression in FAO cells also caused an increase in insulin-stimulated phosphorylation of PKB and GSK3, without any change in protein expression. These results demonstrate that reduction of PTP1B can modulate key insulin signaling events downstream of the insulin receptor.  相似文献   

9.
The insulin receptor is associated with a protein kinase activity. This has been shown for the receptor of liver, fat, and some other tissues which are not primary targets of insulin action. Here kinase activity is demonstrated for the insulin receptor of rat skeletal and cardiac muscle with similar characteristics. Insulin (10(-7) mol/l) stimulates phosphorylation of the 95-kDa receptor subunit 3- to 18-fold. The effect is detectable at 10(-10) mol/l insulin; the ED50 is approx. 3 X 10(-9) mol/l. The kinase phosphorylates exogenous substrate as well, and it is recovered after immunoprecipitation of the receptor with antireceptor antibody suggesting that kinase activity is intrinsic to the muscle receptor.  相似文献   

10.
11.
12.
Insulin receptor substrate-1 (IRS-1) is the major substrate of both the insulin receptor and the IGF-1 receptor. In this study, we created IRS-1 transgenic (IRS-1-Tg) mice which express human IRS-1 cDNA under control of the mouse IRS-1 gene promoter. In the IRS-1-Tg mice, IRS-1 mRNA expression was significantly increased in almost all tissues, but its protein expression was increased in very limited tissues (epididymal fat and skeletal muscle). IRS-1-Tg mice showed glucose intolerance and significantly enlarged epididymal fat mass, as well as elevated serum TNF-α concentrations. Importantly insulin signaling was significantly attenuated in the liver of IRS-1-Tg mice, which may contribute to the glucose intolerance. Our results suggest that excess IRS-1 expression may not provide a beneficial impact on glucose homeostasis in vivo.  相似文献   

13.
Bioactive components from bitter melon (BM) have been reported to improve glucose metabolism in vivo, but definitive studies on efficacy and mechanism of action are lacking. We sought to investigate the effects of BM bioactives on body weight, muscle lipid content and insulin signaling in mice fed a high-fat diet and on insulin signaling in L6 myotubes. Male C57BL/6J mice were randomly divided into low-fat diet control (LFD), high-fat diet (HFD) and HFD plus BM (BM) groups. Body weight, body composition, plasma glucose, leptin, insulin and muscle lipid profile were determined over 12 weeks. Insulin signaling was determined in the mouse muscle taken at end of study and in L6 myotubes exposed to the extract. Body weight, plasma glucose, insulin, leptin levels and HOMA-IR values were significantly lower in the BM-fed HFD group when compared to the HFD group. BM supplementation significantly increased IRS-2, IR β, PI 3K and GLUT4 protein abundance in skeletal muscle, as well as phosphorylation of IRS-1, Akt1 and Akt2 when compared with HFD (P<.05 and P<.01). BM also significantly reduced muscle lipid content in the HFD mice. BM extract greatly increased glucose uptake and enhanced insulin signaling in L6 myotubes. This study shows that BM bioactives reduced body weight, improved glucose metabolism and enhanced skeletal muscle insulin signaling. A contributing mechanism to the enhanced insulin signaling may be associated with the reduction in skeletal muscle lipid content. Nutritional supplementation with this extract, if validated for human studies, may offer an adjunctive therapy for diabetes.  相似文献   

14.
Alpha-synuclein (α-Syn) is a major component of Lewy bodies, a pathological feature of Parkinson's and other neurodegenerative diseases collectively known as synucleinopathies. Among the possible mechanisms of α-Syn-mediated neurotoxicity is interference with cytoprotective pathways such as insulin signaling. Insulin receptor substrate (IRS)-1 is a docking protein linking IRs to downstream signaling pathways such as phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K)1; the latter exerts negative feedback control on insulin signaling, which is impaired in Alzheimer's disease. Our previous study found that α-Syn overexpression can inhibit protein phosphatase (PP)2A activity, which is involved in the protective mechanism of insulin signaling. In this study, we found an increase in IRS-1 phosphorylation at Ser636 and decrease in tyrosine phosphorylation, which accelerated IRS-1 turnover and reduced insulin-Akt signaling in α-Syn-overexpressing SK-N-SH cells and transgenic mice. The mTOR complex (C)1/S6K1 blocker rapamycin inhibited the phosphorylation of IRS-1 at Ser636 in cells overexpressing α-Syn, suggesting that mTORC1/S6K1 activation by α-Syn causes feedback inhibition of insulin signaling via suppression of IRS-1 function. α-Syn overexpression also inhibited PP2A activity, while the PP2A agonist C2 ceramide suppressed both S6K1 activation and IRS-1 Ser636 phosphorylation upon α-Syn overexpression. Thus, α-Syn overexpression negatively regulated IRS-1 via mTORC1/S6K1 signaling while activation of PP2A reverses this process. These results provide evidence for a link between α-Syn and IRS-1 that may represent a novel mechanism for α-Syn-associated pathogenesis.  相似文献   

15.
16.
DHEA improves insulin sensitivity and has anti-obesity effect in animal models and men. However, the molecular mechanisms by which DHEA improves insulin action have not been clearly understood. In the present study, we examined the protein levels and phosphorylation state of insulin receptor (IR), IRS-1 and IRS-2, the association between IRSs and PI3K and SHP2, the insulin-induced IRSs associated PI 3-kinase activities, and the phosphorylation status of AKT and atypical PKCzeta/lambda in the liver and the muscle of 6 month-old Wistar rats treated with DHEA. There was no change in IR, IRS-1 and IRS-2 protein levels in both tissues of treated rats analysed by immunoblotting. On the other hand, insulin-induced IRS-1 tyrosine phosphorylation was increased in both tissues while IRS-2 tyrosyl phosphorylation was increased in liver of DHEA treated group. The PI3-kinase/AKT pathway was increased in the liver and the PI3K/atypical PKCzeta/lambda pathway was increased in the muscle of DHEA treated rats. These data indicate that these regulations of early steps of insulin action may play a role in the intracellular mechanism for the improved insulin sensitivity observed in this animal model.  相似文献   

17.
Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3beta (GSK-3beta) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.  相似文献   

18.
Chronic insulin exposure induces serine/threonine phosphorylation and degradation of IRS-1 through a rapamycin-sensitive pathway, which results in a down-regulation of insulin action. In this study, to investigate whether rapamycin (an mTOR inhibitor) could prevent insulin resistance induced by hyperinsulinemia, 3T3-L1 adipocytes were incubated chronically in the presence of insulin with or without the addition of rapamycin. Subsequently, the cells were washed and re-stimulated acutely with insulin. Chronic insulin stimulation caused a reduction of GLUT-4 and IRS-1 proteins with a correlated decrease in acute insulin-induced PKB and MAPK phosphorylations as well as a reduction in insulin-stimulated glucose transport. Rapamycin prevented the reduction of IRS-1 protein levels and insulin-induced PKB Ser-473 phosphorylation with a partial normalization of insulin-induced glucose transport. In contrast, rapamycin had no effect on the decrease in insulin-induced MAPK phosphorylation or GLUT-4 protein levels. These results suggest that chronic insulin exposure leads to a down-regulation of PKB and MAPK pathways through different mechanisms in adipocytes.  相似文献   

19.
20.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号